Overcoming Challenges in Evaluating Active vs Observer Roles in Simulation-Based Education

Brandon Kyle Johnson, PhD Candidate, RN, CHSE
School of Nursing, Indiana University, Indianapolis, IN
Deanna Reising, PhD, RN, ACNS-BC, FNAP, ANEF
School of Nursing, Indiana University, Bloomington, IN
Objectives:
The purpose of this presentation is to identify the theoretical and methodological challenges for: 1) evaluating learners in observer versus active roles; and 2) implementing multi-site/multi-campus simulation-based experiences. Solutions will be proposed for these challenges.

Brandon Kyle Johnson PhD(c), RN, CHSE
• PhD Candidate: Indiana University School of Nursing
• Employer: Texas Tech University Health Sciences Center
• No Conflicts of Interest

Deanna Reising PhD, RN, ACNS-BC, FNAP, ANEF
• Employer: Indiana University School of Nursing
• No Conflicts of Interest
State of the Science
1. Roles in Simulation

2. NCSBN National Simulation Study (2014)

3. Theoretical Assumptions
 - Constructivism
 - Kolb’s Experiential Learning Theory

4. Current Studies
“Assimilation and accommodation are the ultimate goals in a practice profession and the essence of reflection” (Dreifuerst, 2009, p. 111).
Assumptions

• Theory:
 • Are observers missing the concrete experience (Bong et al. 2017)?
 • What theories best support observational learning?
 • How do we operationalize KELT for the observer?

• Scenarios & Debriefing:
 • Apply learning in different contextual situations (INACSL Standards Committee, 2016)
 • Active Experimentation
 • Debriefing the ‘what if’ in a similar situation with different underlying structure (Dreifuerst, 2009; Forneris & Fey, 2017)
Purpose:
The purpose of this pilot study was to establish that two simulation experiences and the knowledge pre/post tests, involving a clinical situation with respiratory distress, were contextually equivalent scenarios.

- Challenges Identified:
 - Instrumentation
 - Validity/Reliability Limitations (Cognitive Knowledge)
 - Action List (Behavior Reproduction)
 - Facilitation and Debriefing
Instrumentation

• Scenarios
 • Selected 2 simulations from well-known library with expert reviewers
 • Both result in respiratory distress
 • Validated by content expert and local faculty

• Pre/Post-Tests
 • Questions from well-known test-item resources
 • Equivalent Bloom’s Taxonomy domains
 • Equivalent NCLEX-RN (2016) Integrated Processes

• Behaviors
 • List constructed with behaviors expected for a patient with respiratory distress
Challenges in Scenario Implementation

• Confounding variables
 • Scenario Facilitation
 • Debriefing Facilitation
• Overcoming Obstacles:
 • Identical execution of scenario
 • Structured debriefing method
Challenges in Pre/Post Test Equivalency

- Content validity established…but we need more than content validity!
- Criterion validity
 - Content vs. Instructional sensitivity (Waltz, Strickland, & Lenz, 2017)
 - Pre/Post Discriminant Index (PPDI)
 - Individual Gain Index (IGI)
- Reliability
 - McDonald (2014) lists factors that affect reliability
 - Length
 - Discrimination
 - Difficulty
 - Haladyna (2016)
 - Unidimensionality vs. Multidimensionality
Example

<table>
<thead>
<tr>
<th>#</th>
<th>Sim 1 Pre-Test</th>
<th>Sim 1 Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>%upper</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

PPDI	**IGI**
0 | .71

<table>
<thead>
<tr>
<th>#</th>
<th>Sim 2 Pre-Test</th>
<th>Sim 2 Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>%upper</td>
</tr>
<tr>
<td>19</td>
<td>61</td>
<td>76</td>
</tr>
</tbody>
</table>

PPDI	**IGI**
.23 | .73
Lesson Learned

No single statistic should be used to determine an instrument’s validity or reliability (McDonald, 2014)
Behavior Reproduction

Scenario 1

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert CN or provider</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Communicates clinical presentation correctly to interprofessional team (Opioid related resp, depress)</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Administer emergent med (Narcan)</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses level of consciousness</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses blood pressure</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses oxygen saturation</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses respiratory rate</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses heart rate</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses airway, lung sounds</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

Scenario 2

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert CN or provider</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Communicates clinical presentation correctly to interprofessional team (Anaphylaxis r/t antibiotic administration)</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Administer emergent med (Epinephrine)</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses level of consciousness</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses blood pressure</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses oxygen saturation</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses respiratory rate</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses heart rate</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>Reassesses airway, lung sounds</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cronbach’s alpha: .692

Cronbach’s alpha: .795
Lessons Learned

• Simulation evaluation in groups results in clustered designs
 • Consistent with literature findings, more students are observers
 • More control needed in prospective studies
• Train! Train! Train!
 • “All faculty are content experts, not all are expert evaluators” (Kardong-Edgren et al, 2017)
 • Interrater reliability was not established
 • Evaluators reported differences in execution of scenario
 • Control is necessary over the execution
Overcoming Challenges, Next Steps

• Current theoretical frameworks need further exploration
• Instructional Sensitivity
• Multi-campus retrospective studies present challenges

“From the outside looking in, research looks easy!”
• Inconclusive data is still meaningful
• Perspective taking
• Site buy-in
• Experiential Learning
References Available Upon Request

Contact Information:
kyle.johnson@ttuhsc.edu or brkyjohn@iu.edu