Asian Indians and Premature Heart Disease: A Systematic Review

Juvy Montecalvo-Acosta, DNP, RN, ANP-BC, CWCN

Nursing Education Research Conference
April 21, 2018
Disclosure

No known conflicts of interest
Objectives:

- Discuss the best available evidence for identification of risk factors of heart disease in the Asian Indian population through SR.
- Discuss the findings of the SR on Asian Indians and premature heart disease.
- Discuss implications to practice and research.
Background

Asian Indians

- The second largest subgroup of Asians in the United States (U.S. Census, 2015)

- Trace origin of birth by ancestors born or who are natives of India

- Interchangeable terms: Indian, South Asians, Indo-American, Indian-American
Background

- WHO predicts Mortality will exceed 2.4 million in AIs
- One in four cardiac patients in the world will be an AI
- Heart Disease rate 2-4 times higher than other ethnic groups
- Heart Disease rate is four-fold than Americans (Enas, 2005)

Background

- Heart Disease occurs prematurely in Asian Indians
- Heart disease occurs 5-10 years earlier (Enas, 2008; Enas & Senthilkumar, 2002)
- Leading cause of death in AI’s (AHA, 2006)
- First attack usually occurring before their 40th birthday (Enas & Senthilkumar, 2002)

Background

- Asian Indians lack the traditional risk factors.

 (Enas & Senthilkumar, 2002 & Gupta, Brister & Verma, 2006)

- CADI Study by AAPI on Hospitalized Patients in California.

 CAD Rate 4 times higher in AI than rest of the population.

- The risk is even higher among children and grandchildren of AI immigrants due to adoption of Western lifestyle.

 (Enas, 2005)
CAD or atherosclerosis is the result of high levels of cholesterol and is an ongoing inflammatory process resulting in plaque formation along the arteries (Ross, 1999).

Background

Research Questions:

- What are the modifiable risk factors for CAD that is exhibited by Asian Indians?
- What are the non-modifiable risk factors for CAD that is exhibited by Asian Indians?
- What are the emerging risk factors of CAD seen among Asian Indians?
Inclusion Criteria
Inclusion Criteria

- Asian Indians who had CAD or who were at risk of developing CAD
- “Asian Indians” are people who trace their origin to the country of India
- Both AI male and female adults, 18 years plus, in various countries with diverse socio-economic and religious background

Type of Participants
Inclusion Criteria

Types of Outcomes

Modifiable risk factors:
- Alcohol intake
- Smoking
- Dietary practices
- Lack of exercise
- Migration
- Hyperlipidemia
- Metabolic syndrome
- HTN and DM.

Non-modifiable risk factors:
- Family History
- Genetics
- Age

The emerging risk factors:
- Fibrinogen
- Homocysteine
- Elevated Lp (a)
- C-reactive protein
Types of Studies
Exclusion Criteria
Search Strategy

- Current activity in JBI and Cochrane
- Published and unpublished quantitative research papers in English language (2000-2011)
3 Step Search Strategy

1. Pub Med and CINAHL (limited search) to identify key terms in the title, abstract, and keywords of any relevant articles.

3. Reference list and bibliographies of retrieved articles/additional relevant studies
Initial Keywords and Phrases
Grey literature and unpublished studies

- New York Academy of Medicine
- National Library of Medicine, NIH
- Asian Indian websites such as American Associations of Physicians of Indian Origin (AAPI)
- AHA along with American College of Cardiology guidelines was reviewed and matched for the best available evidence.
- CDC, WHO, AHA, MedNar, Google MD, and Virginia Henderson Library of Sigma Theta Tau International websites were also searched.
- Contacted authors, experts & organizations involved with AI
Search Strategy
Assessment of Methodological Quality

- Methodological validity assessed by 2 independent reviewers using standardized critical appraisal instruments from the JBI Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI).
- Disagreements resolved through discussion/with a third reviewer
Data Collection (Quantitative Data)

- Standardized data extraction tool from JBI-MAStARI
- Authors of studies were contacted for missing information
- Disagreements discussed and resolved by a third reviewer.

- Included specific details about the interventions, populations, study methods and outcomes from review question and specific objectives.
Data Collection (Quantitative papers)

Results

- Where possible, were pooled in the meta-analysis using JBI-MAStARI.
- Results were subjected to double data entry.
- Heterogeneity:
 - Chi-square
 - Subgroup analyses

Effect sizes

- OR (for categorical data)
- Weighted mean differences (for continuous data)
- 95% CI
Methodological quality

<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>21</td>
</tr>
<tr>
<td>USA</td>
<td>9</td>
</tr>
<tr>
<td>UK</td>
<td>8</td>
</tr>
<tr>
<td>Australia</td>
<td>2</td>
</tr>
<tr>
<td>South Africa</td>
<td>2</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1</td>
</tr>
<tr>
<td>Israel</td>
<td>1</td>
</tr>
</tbody>
</table>

n = 39,945
Results
Quantitative Evidence on Modifiable risk factors

Study	DerSimonian & Laird Relative Risk (Risk Ratio)	Weight (CI 95% Random)
Maitra, A. et al (2009) | 18.05% 5.68 (3.43,9.40) | 1.0
Vinukonda, G., Mohammad, N.S., Jain, J.N., Ch... | 17.45% 2.77 (1.56,4.92) | 1.0
Gambhir, J, Kaur, H, Prabh, K., Morrisett, J. a... | 14.32% 4.95 (1.98,12.37) | 0.8
Goel, P.K. et al (2003) | 20.14% 1.12 (0.97,1.29) | 0.8
Mukherjee, M., Brouilette, S., Stevens, S. &am... | 19.61% 1.98 (1.51,2.60) | 0.7
Hoogeveen, R., et al (2001) | 10.42% 11.70 (2.95,46.48) | 0.7
Overall | 100.00% 3.10 (1.64,5.87) | 0.7

Favours Treatment | 0.0 | 61.0 Favours Control

Overall Z=3.48, P=0.0006

Heterogeneity Chi squared=73.82, P=0.0

n=3179
n=969
Quantitative Evidence on Modifiable risk factors

Hypertension

<table>
<thead>
<tr>
<th>Study</th>
<th>DerSimonian & Laird Relative Risk (Risk Ratio)</th>
<th>Weight (CI 95% Random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liem, S.S. et al. (2009)</td>
<td>+</td>
<td>14.71% 1.21 (1.05,1.38)</td>
</tr>
<tr>
<td>Ye, J., Rust, G., Bailer, P. and Daniels, E. (200..)</td>
<td>+</td>
<td>13.97% 0.43 (0.34,0.55)</td>
</tr>
<tr>
<td>Bhatle, R., et al. (2010)</td>
<td>+</td>
<td>13.87% 1.63 (1.26,2.12)</td>
</tr>
<tr>
<td>Williams, E.O., Stamatakis, E., Chandola, T. &..</td>
<td>+</td>
<td>14.41% 1.06 (0.87,1.27)</td>
</tr>
<tr>
<td>Chambers et al. (2001)</td>
<td>+</td>
<td>14.33% 1.72 (1.40,2.10)</td>
</tr>
<tr>
<td>Vallapuri, S., Gupta, D., Tahwar, K., Billie, M., M..</td>
<td>+</td>
<td>14.43% 1.11 (0.92,1.34)</td>
</tr>
<tr>
<td>Chambers, J.C. et al. (2000)</td>
<td>+</td>
<td>14.28% 2.30 (1.87,2.83)</td>
</tr>
<tr>
<td>Overall</td>
<td>+</td>
<td>100.00% 1.22 (0.86,1.72)</td>
</tr>
<tr>
<td>Favours Treatment</td>
<td>1.0</td>
<td>Favours Control</td>
</tr>
<tr>
<td>Overall Z=1.13, P=0.2678</td>
<td></td>
<td>Heterogeneity Chi squared=129.30, P=0.0</td>
</tr>
</tbody>
</table>
Quantitative Evidence on Modifiable risk factors

Total Cholesterol

<table>
<thead>
<tr>
<th>Study</th>
<th>DerSimonian & Laird WMD</th>
<th>Weight (CI 95% Random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramachandran, A., et al. (2001)</td>
<td></td>
<td>31.2% 0.30 (0.09,0.51)</td>
</tr>
<tr>
<td>Mohan, V., Deepa, R., Rani, S., and Premalath...</td>
<td></td>
<td>31.6% 0.62 (0.53,1.11)</td>
</tr>
<tr>
<td>Gambhir, J., Kaur, H., Prabh, K., Morrisett, J., a...</td>
<td></td>
<td>1.10% 14.20 (4.94,23.50)</td>
</tr>
<tr>
<td>Mokherjee, M., Grouille, S., Stevens, S. &am...</td>
<td></td>
<td>31.8% 0.10 (-0.10,0.30)</td>
</tr>
<tr>
<td>Hoogeveen, R., et al (2001)</td>
<td></td>
<td>0.48% 31.50 (17.26,45.94)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>100.0% 1.50 (0.50,2.50)</td>
</tr>
</tbody>
</table>

Favours Treatment 61.0 0.0 61.0 Favours Control

Overall Z=2.95, P=0.0032

No significance between the two groups
Quantitative Evidence on Modifiable risk factors

LDL Cholesterol

CAD vs. non-CAD group

Meta-analysis showed significant heterogeneity
Quantitative Evidence on Modifiable risk factors

- **Univariate analysis:**
 - Cholesterol, Triglycerides (p=0.003), abnormalities in the fractions of cholesterol and oxidized LDL antibodies were significantly associated with CAD (Ramachandran et al. 2001).

- **Multivariate analysis:**
 - VLDL to HDL (p=0.037) strongly associated with CAD. (Ramachandran et al. 2001)

- **Subgroup analysis:**
 - younger patients (≤40 yrs) had higher lipid values vs. older age group (41-55 years) (Tewari et al., 2005; Goel et al., 2003).

Quantitative Evidence on Modifiable risk factors

Dyslipidemia

- Prevalence of CAD seen with increase of:
 - TC (trend chi-square 26.2 p<0.001)
 - LDL-C (trend chi-square 24.5, p<0.001)
 - Triglycerides (trend chi-square:9.96, p=0.002)
 - TC/HDL ratio (trend chi-square: 6.14, p=0.0132) (Mohan et al., 2001)

- Impaired reverse cholesterol transport, due to the smaller particle size resulting in higher rates of CAD in AI (Bhalodkar, 2005)

- Fasting triglycerides, a discriminator of CHD risk in AI population (Patel et al, 2010)

Quantitative Evidence on Modifiable risk factors

Diabetes

- AI more likely to be diabetic (OR=2.27, 95% CI=1.63-3.20)
 (Ye, Rust, Baltrus & Daniels 2009).
- Prevalence of diabetes was higher
 (Tewari et al, 2005).
- More hyperglycemic than Europeans leading to an impaired CV autonomic function and an increased CAD risk (Bathula et al. 2010).

Quantitative Evidence on Modifiable risk factors

Pooled Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>DerSimonian & Laird Relative Risk (Risk Ratio) Weight (CI 95% Random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liem, S.S. et al. (2009)</td>
<td>15.14% 2.92 (2.32, 3.89)</td>
</tr>
<tr>
<td>Ye, J., Faust, G., Gathrus, P., and Daniels, E. (2000)</td>
<td>14.90% 1.23 (0.93, 1.63)</td>
</tr>
<tr>
<td>Barbola, R., et al. (2010)</td>
<td>12.60% 3.66 (1.97, 6.68)</td>
</tr>
<tr>
<td>Williams, E.D., Stanastakis, E., Chandola, T., &..</td>
<td>15.25% 1.90 (1.47, 2.24)</td>
</tr>
<tr>
<td>Chambers et al. (2001)</td>
<td>13.73% 3.92 (2.44, 6.20)</td>
</tr>
<tr>
<td>Vallapur, S., Gupta, D., Taiwar, K., Bille, M., M..</td>
<td>14.55% 0.84 (0.59, 1.19)</td>
</tr>
<tr>
<td>Chambers, J.C. et al. (2000)</td>
<td>13.84% 5.07 (4.73, 14.37)</td>
</tr>
<tr>
<td>Overall</td>
<td>100.00% 2.50 (1.51, 4.13)</td>
</tr>
</tbody>
</table>

- Pooling of seven studies comparing AI (n=4638) and non-AI (n=89398) with diabetes showed that diabetes was prevalent more in the non-AI group ($x^2=101.95$, p=0.0004).

DIABETES
Quantitative Evidence on Modifiable risk factors

- HbA1C showed a strong association with CAD (OR:2.6, 95% CI:1.23-5.63; p= 0.01)
 - Associated with other CAD risk factors: BMI (p<0.001), SBP (p=0.028), DBP (p=0.017)
 - WC (p<0.001).
 - Associated with serum cholesterol (p<0.001), triglycerides (p<0.001), and LDL-C (p<0.001).
 - (Dilley et al, 2007)

Quantitative Evidence on Modifiable risk factors

- 7 studies pooled; CAD group with higher BMI, results statistically significant (p<0.0001, Chi square 100.7).
- CURES by WHO: large cross-sectional study (n = 2350), Asia Pacific BMI, & WC cut points among AI in relation to cardio- metabolic risk factors
- BMI cut point to identify cardio metabolic risk factors: 23 kg/m² (males & females)
 - Men: WC 87 cm (34.3 inches)
 - Women: 82 cm (32.3 inches)
- Study confirmed the WHO Asia Pacific guidelines of BMI of 23 kg/m² to define overweight in AI
 (Mohan et al, 2001)
Quantitative Evidence on Modifiable risk factors

Smoking

- CAD vs non-CAD group: 5 studies pooled; CAD group with higher rates of smoking (p<0.0001, Chi-square 128.45)

- Un-pooled Sub group analysis: Smoking significantly prevalent in the younger age group (less than or equal to 40 years)
 - 47.48% than the older group (41-55yrs) 40.04% p = 0.04 (Tewari, 2005)

- AI and non-Al: 7 studies pooled; Smoking less prevalent among AI group (p<0.0001 Chi-square 30.80)

Quantitative Evidence on Modifiable risk factors

(Roy et al; 2010)

Quantitative Evidence on Modifiable risk factors

Physical Inactivity

Quantitative Evidence on Modifiable risk factors

- Inverse association with green-leafy vegetables
- Use of mustard oil lowers the risk of CAD
- Fruit & vegetable consumption was protective (Radhika et al., 2008)
- Decreased Vit. B12 concentration, due to vegetarian diet, leading to elevated homocysteine (Kumar et al., 2009)
- Lower plasma concentration of omega-3 fatty acids and selenium
- Higher concentrations of arachidonic acid and saturated fatty acids due to lower intake of marine foods resulting to susceptibility CHD acids (Manav, Su, Hughes, Lee, & Ong, 2004)

Quantitative Evidence on Modifiable risk factors

Quantitative Evidence Non-modifiable Risk factors

- 4 genetic variants with premature CAD as well as with lipids and lipoproteins in a group of affected siblings belonging to AI families with significant history of CAD (Shanker et al. 2008).
 - There was a relationship between circulating lipids and traditional coronary risk factors in this group.
- Lower levels of Coenzyme Q10 (CoQ10) identified in AI increased their susceptibility to CAD. (Hughes, Lee, Feng, Lee & Ong, 2002).

Genetics

- 75G>A and +83C>T
- SNPs APOC3
- Sac1 SNP and the APOA5
- S19W SNP in the Apo11q gene cluster

Quantitative Evidence Non-modifiable Risk factors

Anatomy

Smaller Arteries

- A statistically significant difference in the mean diameter of the left main (p=0.005), left anterior descending (p=0.014), left circumflex (p=0.001), and right coronary arteries (p=0.021).
 (Makaryus et al., 2005)

Telomere Biology and LV mass

- Telomere biology is altered in subjects with CAD. AI with CAD has shorter telomeres than those without CAD (p=0.002) (Mukerjee, Brouilette, Stevens, Shetty & Samani, 2011).
- Higher left ventricular mass was associated with an increased risk of CAD in AI (p=0.05) (Kumaran et al. 2002)

Quantitative Evidence on Non-Modifiable risk factors

FAMILY HISTORY

Family history of CAD

<table>
<thead>
<tr>
<th>Study</th>
<th>DerSimonian & Laird Relative Risk (Risk Ratio) Weight (CI 95% Random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liem, S.S. et al. (2009)</td>
<td>50.70% 1.49 (1.21, 1.84)</td>
</tr>
<tr>
<td>Vallapuri, S., Gupta, D., Talwar, K., Billie, M., M...</td>
<td>49.30% 0.21 (0.13, 0.35)</td>
</tr>
</tbody>
</table>

Overall: 100.00% 0.57 (0.08, 3.95)

Favours Treatment: 0.0 1.0
Favours Control: 61.0

\[x^2 = 50.44 \]
\[p = 0.5686 \]
Quantitative Evidence on Non-Modifiable risk factors

Family History of CAD

- Pooling of two studies in this category did not show any statistically significant difference between the CAD group and the control group; \(p = 0.7872 \), \(\text{Chi – square} = 50.44 \).
- In the risk factor analysis of a cohort of 1971 patients, 205 patients (10.4%) had family history of premature CAD (Tewari et al, 2005).

Quantitative Evidence on Emerging risk factors

Fibrinogen

- Described as an independent pro-arteriosclerotic agent.
- Found in a diabetic subjects with CAD
- A significant trend with fibrinogen (chi-square 6.3, \(p=0.012 \)),
 - no significant association with CAD (chi-square 6.6, \(p=0.09 \)).
 (Ramachandran et al., 2001)
Mohan et al. 2001

Quantitative Evidence Non-modifiable Risk factors

- Multiple logistic regression analysis identified age (OR 1.05 p<0.001) as the risk factor for CAD.
- Younger AI patients had a more atherogenic lipid profile than older sub-groups for CAD.

Mohan et al. 2001

Quantitative Evidence on Emerging risk factors

Plasma Homocysteine

- Level is found to be higher in AI with CAD was than with controls (p=0.001)
- Identified as a novel and independent risk factor for CAD in AI (Chambers et al; 2000)
- Elevated level was found to increase the risk of CAD (95%CI: 1.93-10.82).
- Elevated homocysteine may contribute as much as two-fold CAD deaths in AI. This difference was explained by a lower Vitamin B12 and folate levels. Dietary vitamin supplementation may reduce the risk.
- The two genetic determinants: MTHFRC677T (OR: 1.96, 95%CI: 1.06-3.61) and GCPIIC1561T (OR: 2.09, 95% CI: 1.09-3.97), were found to be associated with risk for CAD (Vinukonda et al. 2007)
Quantitative Evidence on Emerging risk factors

Adinopectin

- Total adiponectin and HMW adiponectin were positively associated with coronary artery angiographic findings using Gensini index score in AI (Zornitzki et al, 2009).

- AI had greater extent of CAD than Caucasian by the Gensini score (p<0.0001) (Vallapuri et al., 2002).
Quantitative Evidence on Emerging risk factors

Lipoprotein (a)

- Lp(a) levels were 2.5 times higher in CAD patients compared to controls (Gambhir et al, 2008).
 - Lp (a) level is a significant predictor of CAD in young AI.
 - Elevated Lp (a) levels confers genetic predisposition to CAD in young AI.
- Lp (a) was significantly increased (50% higher) in CAD AI patients than the controls (p<0.001) (Geetanjali et al, 2003)

Quantitative Evidence on Emerging risk factors

C-Reactive Protein

Platelets

- Platelet activation is an important factor in the pathogenesis of CAD.
- AA-stimulated P-selectin expression (p<0.02) and TRAP stimulated platelet formation was significantly higher in AI than Caucasians (p<0.02).
 - This disparity in platelet reactivity among AI predisposes to as higher CAD rates. (Patel et al., 2007)
Aspirin resistance

- Aspirin resistance in AI cohort patients with documented heart disease was 38.1%.
- Patients with elevated absolute urinary dehydrthromboxane levels (>320pg/ml) on chronic aspirin therapy constituted a high risk subset for recurrent vascular events.

Thomson, John, George, Joseph & Jose, 2009
Summary

- Hypertension: not a risk factor of CAD in AI
- TC & LDL: prevalent in AI, but results not statistically significant. Triglycerides was prevalent; results statistically significant.
- TC, LDL, & triglycerides were not related to CAD in AI.
- Diabetes, not a risk factor for CAD in AI.
- AI had higher BMI compared to non-AI.
- BMI: Not associated with CAD.
- Although smoking was less prevalent in AI compared to non-AI; smoking increased the risk of CAD in AI.
Summary: Modifiable risk factor

- Alcohol not cardio-protective
- Physical inactivity
- Lower concentration of omega-3 Fatty acids
- Lower levels of Vitamin B12
- Migration & Urbanization
Summary: Non-modifiable

- Genes: premature heart disease.
- Narrow coronary arteries
- Shorter telomeres
- Higher left ventricle mass
- Family history: Strong predictor
- Age: young
Summary: Emerging Risk Factors

- Fibrinogen a pro-arteriosclerotic agent
- Plasma homocysteine an independent risk factor
- Lipoprotein (a): Higher, strongly associated with CAD
- Higher C-reactive protein concentration: higher CAD risk
- Aspirin resistance: increased CAD
Discussion

- SR undertaken to identify the risk factors of CAD in AI.
- Meta-analysis was conducted to add greater objectivity to the findings thereby increasing the ability to extract definitive conclusions from the studies detailed in this review.
- Findings to be interpreted cautiously as a random effect model was used; there is a potential for the results of small studies to over or underestimate the risk of CAD in AI.
Limitations

- Studies in English language only.
- Studies in other languages might have impacted the results.
- Excluding the studies on AI children might have resulted in missing additional evidence in exploring genetics as a risk factor for CAD in AI.
Conclusion

- Risk of CAD is often underestimated because historically AI has not been perceived as having the traditional risk factors for CAD.
- In fact, AI are exposed to those very same risk factors.
- Traditional factors may not be the most important etiologies for CAD in AI and that genetics along with the emerging risk factors might be a contributing factor.
Implications for Practice

- CAD occurs at a younger age in AI than other ethnic groups. Early screening, identification and intervention remain crucial.
- Broader use of lower target goals such as cut-off points for BMI and WC for AI as recommended by WHO is needed to identify CAD risk.
- Lower threshold for intervention, lower target goals for treatment.
- Need for more stringent guidelines since they are predisposed to CAD.
- Culturally appropriate strategies to reduce CAD risk should be put in place.
- Urgent action at individual, societal and governmental level needed to decrease the growing epidemic among AI.
Implications for Research

- Effectiveness of screening for CAD risk factors in AI population to be explored.
- Randomized controlled trials on the effective screening and prevention strategies are priority for this group.
- Primary research on the opportunities to improve risk factor reduction and to influence behavior modification is also recommended.