Assessment of Genomic Knowledge among Nurses in an Online RN to BSN Completion Program

Lisa B. Aiello, PhD, RN, MSN, AOCNS
College of Nursing and Health Professions, Drexel University
Villanova University, College of Nursing

Introduction and Background

- Nurses must have a basic understanding of genetics-genomics in order to provide appropriate care.
- Genetic-genomic education has begun to be integrated into undergraduate and graduate nursing curricula.
- There continues to be a gap in genetic-genomic knowledge among student nurses, practicing nurses, and nursing faculty.

Purpose

The purpose of this study was to:
- Assess the genetics-genomics knowledge of nurses in an online RN to BSN completion program.
- Identify the knowledge and misconceptions of foundational genetic-genomic concepts.
- Evaluate differences in scores based on demographic data.

Methods

- Cross-sectional descriptive study.
- Convenience sample of RNs enrolled in or recently graduated from an online RN to BSN completion program at a large urban university in the Mid-Atlantic region of the United States.
- Participants were given access to the Genomic Nurse Concept Inventory (GNCI©) via a web-based link.
- Scores can range from 0 to 31, with higher scores indicating increased knowledge.
- The GNCI maps to 18 concepts in 4 topical categories (genome basics, mutations, inheritance, and genomic health care).
- Distractors used represented common misconceptions of genomic concepts.

Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Description</th>
<th>Mean Score</th>
<th>% Correct</th>
<th>Cronbach's alpha</th>
<th>High Scorers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aiello 2014</td>
<td>181 RN to BSN students</td>
<td>13.76</td>
<td>44%</td>
<td>0.72</td>
<td>* Students who had already graduated from RN to BSN program (p=0.002)</td>
</tr>
<tr>
<td>Ward, Haberman, & Barbosa-Leiker, 2014</td>
<td>705 upper level baccalaureate nursing students</td>
<td>14.59</td>
<td>47%</td>
<td>0.77</td>
<td>*Males * Students previously took genetics course * Students in final semester</td>
</tr>
<tr>
<td>Ward, French, Barbosa-Leiker, & Iverson, 2016</td>
<td>758 upper-division BSN students</td>
<td>13.26</td>
<td>42.8%</td>
<td>0.73</td>
<td>*Males * Students previously took genetics course</td>
</tr>
<tr>
<td>Ward, Purath, & Barbosa-Leiker, 2016</td>
<td>1002 students in varied progression in UG nursing program at 14 different schools of nursing</td>
<td>12.85</td>
<td>41.5%</td>
<td>0.73</td>
<td>*Males * Students previously took genetics course * Students in accelerated programs</td>
</tr>
<tr>
<td>McCabe, Ward, & Riciardi, 2016</td>
<td>75 practicing pediatric nurses</td>
<td>13.7</td>
<td>44%</td>
<td>0.76</td>
<td>Not reported</td>
</tr>
<tr>
<td>Read & Ward, 2016</td>
<td>495 nursing faculty</td>
<td>14.93</td>
<td>48%</td>
<td>0.79</td>
<td>* Higher self-rated proficiency * Doctoral degree * Took genetics course * Taught either stand-alone genetics course or lecture content within nursing or related course</td>
</tr>
<tr>
<td>Munroe, 2016</td>
<td>109 undergraduate junior BSN students</td>
<td>Pretest=13.83 Posttest=15.49</td>
<td>Not reported</td>
<td>Not reported</td>
<td>* Significant posttest improvement after receiving genomics content over 1 semester</td>
</tr>
</tbody>
</table>

Discussion and Conclusion

- RN to BSN nursing students scored similarly to previous cohorts, indicating low knowledge.
- The questions that > 50% of the sample answered incorrectly were predominantly in the genome basics category.
- The questions in which a distractor (misconception) was chosen by 50% or more of the sample were predominantly in the genome basics category.
- Nurses need to have a stronger understanding of genomic science in order to build new knowledge.
- A pre-requisite or required course in genomic science may improve the understanding of genomic basics.
- Genomics should be integrated into nursing curricula.
- Faculty need to improve their knowledge about genomics.

Ausubel’s Theory of Assimilation guided this research. Ausubel differentiates between rote knowledge (memorization) and meaningful knowledge.
- Meaningful knowledge is attained when new knowledge is assimilated with pre-existing knowledge.
- Meaningful knowledge is linked to concepts and retained longer than rote knowledge.
- The caveat is that if a person’s pre-existing knowledge includes misconceptions, new learning can be distorted.

References

Future Research

Future research should include:
- Evaluating the best methods to improve genomic knowledge.
- Using the GNCI as a summative assessment & using it to guide curricula development.
- Testing graduate nurses with the GNCI.
- Measuring how integration of genomic knowledge improves patient outcomes.