Evaluating the Impact of Supplemented Simulation and Traditional Learning Experiences on Student Decision Making and Clinical Competence

Aimee Woda PhD RN-BC Assistant Professor

Acknowledgements

- Theresa Schnable MS, RN and Penny Alt-Gehrman MSN, RN
- Kristina Thomas Dreifuerst PhD, RN, CNE, ANEF (Mentor)
- Mauricio Garnier-Villarreal PhD, (Statistician)

o Funded by Marquette University, College of Nursing Research Office

- No conflict of interest
- Objectives:
 - o 1. Supplemental vs substituting
 - o 2. Instruments
 - o 3. Improve clinical decision making/competence

Effect of Simulation Education on Student Nurses' Performance

INCREASES

- Clinical knowledge (Shinnick & Woo, 2015)
- Clinical decision-making (CDM) skills (Kaddoura, 2010)
- Teamwork (Nagle, McHale, Alexander, & French, 2009; Rush, Dyches, Waldrop, & Davis, 2008)
- Self-confidence (Fischer & King, 2013; Leonard et al., 2010; Maas & Flood, 2012; Ricketts, 2011)
- Increase in ability to recognize a change in patient status (Parker, 2014)

DECREASES

- Anxiety (Casida & Shpakoff, 2012)
- Medication errors (Dickson & Flynn, 2012)

What Is The Best Way to Integrate Simulation into Nursing Education?

• The National Council of State Boards of Nursing (NCSBN):

high quality simulation can

substitute up to 50% of

traditional clinical hours

(Hayden, Smiley, Alexander, Kardong-Edgren, & Jeffries, 2014)

• No difference in: • Student performance

(Meyer et al., 2011; Schlairet & Fenster, 2012, Hansen & Bratt, 2017)

o Clinical judgment

(Meyer et al., 2011)

o Critical thinking

(Schlairet & Fenster, 2012)

• Perception of clinical decision making (Woda, Gruenke, Alt-Gehrman, & Hansen, 2016)

Substitution vs. Supplementation

Substitution

 Students leave the hospital setting to participate in a simulation learning experience, replacing scheduled hospital clinical experiences

Supplementation

 Simulation learning is supplemental, in addition to hospital clinical experiences

Curricular Revision

Major revision to the three Adult Health courses

o Chronic Illness

o Acute Illness

o Transition to Practice

Curriculum Revision

	Gro	oup 1		Group 2	
Traditional Clinical Hours	Number of <u>substituted</u> Simulations	Number of <u>supplemented</u> Simulations	Traditional Clinical Hours	Number of <u>substituted</u> Simulations	Number of supplemented Simulations
Chronic Illness (1 day/week x 14 weeks)	0	0	Chronic Illness (2 days/week x 7 weeks)	0	4
Acute Illness (1 day/week x 14 weeks)	1	0	Acute Illness (2 days/week x 7 weeks)	0	4
Senior Clinical (104 hours with preceptor)	0	3	Senior Clinical (2 days/week x 7 weeks)	0	6
Total # Sims	1	3	Total # Sims	0	14

*Each Simulation lasted between 4-6 hours

Purpose

The purpose of this study was to determine whether these curricular changes influenced the development of nursing students.

o Perceived CDM
o Perceived self-confidence with CDM
o Perceived anxiety with CDM
o Clinical competence

Sample

- Two groups of baccalaureate nursing students
- Traditional pre-licensure program were compared
- Final semester-graduating seniors
- Group 1 (May 2015)
 N=35
- Group 2 (May 2016)
 N=36

Design and Method

- Quasi-experimental design
- Participation in a novel evaluative simulation
 - o Last week of the semester
 - o One student per simulation
 - o Brief report
 - o Chart review
 - o Scenario
 - Identify change in condition
 - Contact provider
 - Implement both nursing and medical interventions
 - Evaluate patient response

Measurement Instruments

- Demographics
- The Clinical Decision Making in Nursing Scale (CDMNS)
 - Cronbach's α.83
- The Nurse Anxiety and Self-Confidence with Clinical Decision Making (NASC-CDM)
 - **Cronbach's α for self**-confidence .97 and anxiety .96
- Creighton Competency Evaluation Instrument
 - Cronbach's α .97-.98

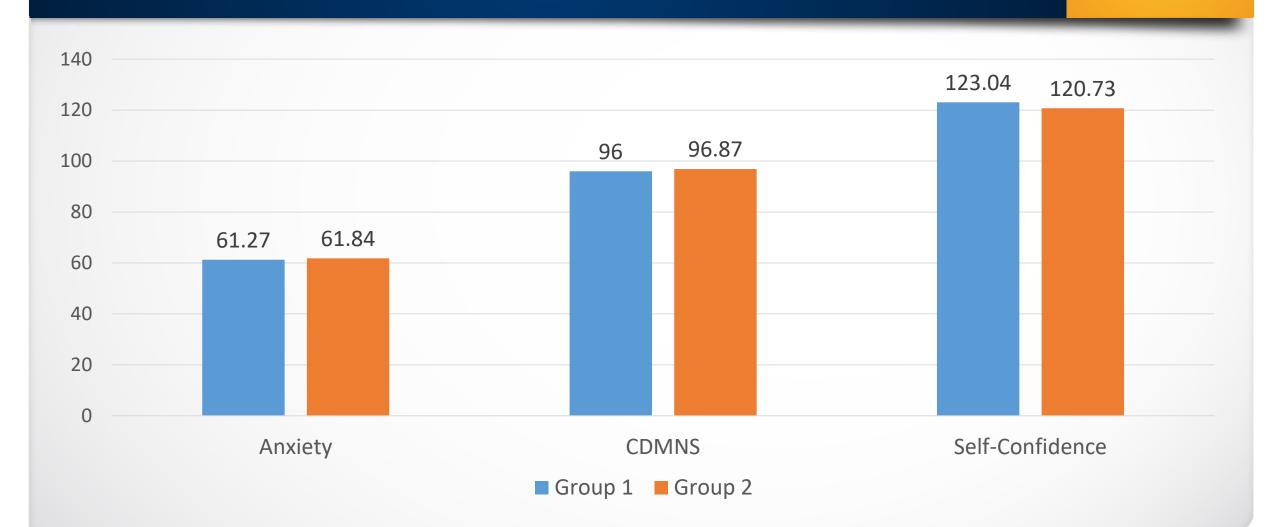
Data Analysis

• T-test

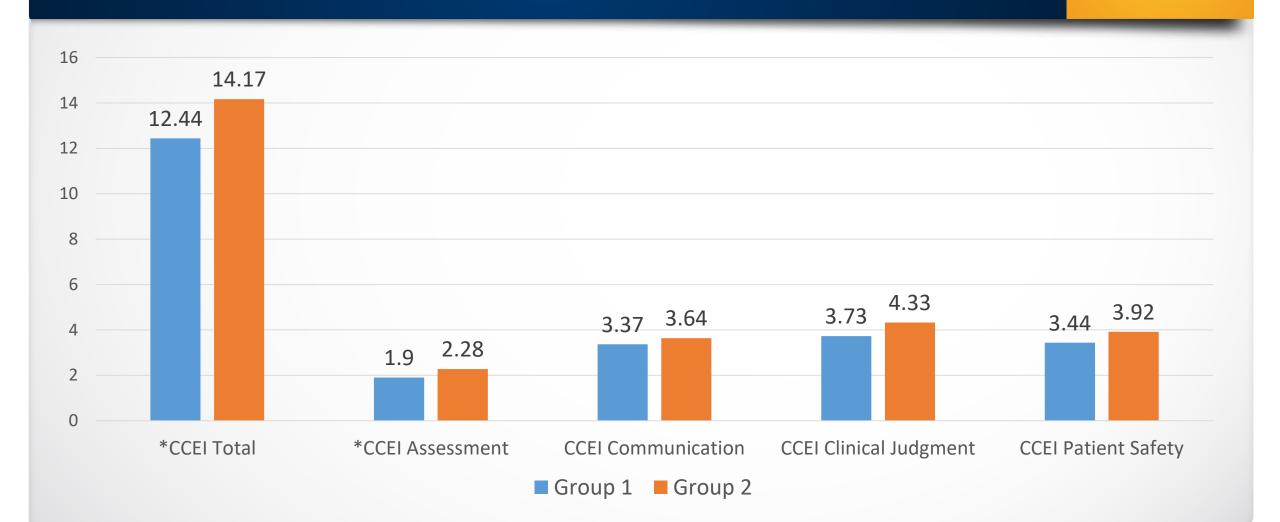
o Demographic differences

Inter-rater reliability

 OCCEI Group 1 and 2 Cohen Kappa of k=1


Bayesian Paradigm

 Inference in observed data


Descriptive Demographics

	Group 1 (N=35)	Group 2 (N=36)	
Gender			
Male	3 (8.6)	1 (2.9)	
Female	32 (91.4)	34 (97.1)	
Age	Range= 21-27, Mean=22	Range= 21-24, Mean= 22	
Ethnicity			
Caucasian	29 (82.9)	32 (88.9))	
African American	3 (8.6)	3 (8.3)	
Asian	1 (2.8)	1 (2.8)	
Hispanic	2 (5.7)	0 (0)	
Nursing Assistant			
Yes	5 (14.3)	*23 (63.9)	
No	30 (85.7)	13 (36.1)	
Nurse Intern			
Yes	7 (20.0)	*19 (52.8)	
No	28 (80.0)	17 (47.2)	

Mean Differences in Group Scores

Mean Differences in Group Scores

Observations

- Students with supplemented simulation (Group 2):

 Prioritized their respiratory assessment
 Verified the correct patient more often
 Had fewer medication errors
 Appeared more comfortable
 - Equipment
 - Using SBAR
 - Calling for assistance (STAT Team)

Limitations

- Volunteers
- Only evaluated one model (single site)

o Only evaluated students in the simulated environment

- Unknown previous patient exposure
- Unable to blind groups

Conclusion

Supplementation vs. substitution may be a better model

 Increasing simulation may result in graduating nursing students that perform better patient assessments, have increased communication skills, clinical judgment, and provide safer care in the simulated environment.

Future Research

- Further study is warranted
- Evaluate the impact of simulation on student competence in the traditional clinical setting
- Develop user friendly tools to assist instructors in the clinical settings to evaluate competence and decision making

Questions

Aimee Woda PhD RN Assistant Professor Marquette University aimee.woda@marquette.edu

References

- Casida, J., & Shpakoff, L. (2012). Baccalaureate student perceptions of integrating simulation as a teaching strategy in an acute and critical care nursing course. *Clinical Simulation in Nursing*, *8*, e347-e352. doi: 10.1016/j.ecns.2011.01.008.
- Dickson, G. L. & Flynn, L. (2012). Nurses' clinical reasoning: Processes and practices of medication safety. *Qualitative Health Research*, 22(1), 3-16.
- Fisher, D. & King, L. (2013). An integrative literature review on preparing nursing students through simulation to recognize and respond to the deteriorating patient. *Journal of Advanced Nursing*, *69*(11), 2375-2388.
- Hansen, J., & Bratt, M. (2017). Effect of sequence of simulated and clinical practicum learning experiences on clinical competency of nursing students. *Nurse Educator*, *42*(5), 231-235. doi. 10.1097/NNE.0000000000364.
- Hayden, J.K., Smiley, R.A., Alexander, M., Kardong-Edgren, S. & Jeffries, P.R. (2014). The NCSBN national simulation study: A longitudinal, randomized, controlled study replacing clinical hours with simulation in prelicensure nursing education. *Journal* of Nursing Regulation, 5(2), C1-S64.
- INACSL Standards Committee (2016). INACSL standards of best practice: Simulation glossary. Clinical Simulation in Nursing, 12(S), S39-S47. doi: 10.1016.j.ecns.2016.09.012
- Kaddoura, M. A. (2010). New graduate nurses' perceptions of the effect of clinical simulation on their critical thinking, learning, and confidence. *Journal of Continuing Education in Nursing*, *41*(11), 506-516.
- Leonard, B., Shuhaibar, E. L. H., & Chen, R. (2010). Nursing student perceptions of intraprofessional team education using high-fidelity simulation. *Journal of Nursing Education*, *49*, 628-631. doi: 10.3928/01484834-20100730-06.
- Maas, N. A., & Flood, L. S. (2011). Implementing high-fidelity simulation in practical nursing education. *Clinical Simulation in Nursing*, 7, e229-e235. doi: 10.1016/j.ecns.2010.04.001

References

- Meyer, M. N., Connors, H., Hou, Q., Gajewski, B. (2011). The effects of simulation on clinical performance: A junior nursing student clinical comparison study. *Simulation in Healthcare*, *6*(5), 269-277.
- Nagle, B., McHale, J., Alexander, G., & French, B. (2009). Incorporating scenario-based simulation into a hospital nursing education program. *Journal of Continuing Education in Nursing*, 40(1), 18-25.
- Parker, C. G. (2014). Decision-making models used by medical-surgical nurses to activate rapid response teams. Research for Practice, 23(3), 159-164.
- Ricketts, B. (2011). The role of simulation for learning within pre-registration nursing education: A literature review. *Nurse Education Today*, *31*, 650-654. doi: 10.1016/j.nedt.2010.10.029.
- Rush, K., Dyches, C., Waldrop, S., & Davis, A. (2008). Critical thinking among RN-to-BSN distance students participating in human patient simulation. *Journal of Nursing Education*, 47(11), 501-507.
- Schlairet, M., & Fenster, M. (2012). Dose and sequence of simulation and direct care experiences among beginning nursing students: A pilot study. Journal of Nursing Education, 51(12), 668-675.
- Shinnick, A., & Woo., M. (2015). Learning style impact on knowledge gains in human patient simulation. Nurse Education Today, 35, 63 -67. doi: 10.1016.j.nedt.2014.05.013.
- Woda, A., Gruenke, T., Alt-Gehrman, P., & Hansen, J. (2016). Nursing Student Perceptions Regarding Simulation Experience Sequencing. Journal of Nursing Education, 55 (9),528-532. doi. 10.3928/01484834-201608 16-07.

Mean Differences in Group Scores

	Group 1 Mean	Group 2 Mean	Mean Difference (SE)	Mean Difference 95% Cl	Cohen d Mean (SD)	Cohen d 95% Cl
CCEI Total	12.44	14.17	1.73 (0.61)*	0.53, 2.92	0.65 (0.23)	0.19, 1.11
CCEI Assessment	1.9	2.28	0.38 (0.12)*	0.14, 0.61	0.73 (0.24)	0.26, 1.19
CCEI Communication	3.37	3.64	0.27 (0.16)	-0.06, 0.59	0.38 (0.23)	-0.08, 0.84
CCEI Clinical Judgment	3.73	4.33	0.60 (0.32)	-0.02, 1.23	0.44 (0.23)	-0.02, 0.90
CCEI Patient Safety	3.44	3.92	0.48 (0.28)	-0.07, 1.03	0.40 (0.23)	-0.05, 0.86
CDMNS	96.0	96.87	0.87 (2.29)	-3.77, 5.18	0.09 (0.23)	-0.38, 0.54
Self Confidence	123.04	120.73	-2.31 (3.94)	-10.15, 5.48	-0.13 (0.23)	-0.59, 0.32
Anxiety	61.27	61.84	0.57 (4.27)	-7.89, 8.91	0.03 (0.23)	-0.43, 0.46

SE = Standard Error, SD = Standard Deviation, CI = Credible Interval

* = group means difference meaningfully different from 0