Using Cluster Analysis to Identify Subgroups of College
 Students at Increased Risk for Cardiovascular Disease

Dieu-My T. Tran, PhD, RN, CNE Assistant Professor UNLV School of Nursing

Kevin A. Kupyzk, PhD
Lani M. Zimmerman, PhD, RN

DISCLOSURES

Conflict of Interest

* Dieu-My Tran(Content expert and speaker) reports no conflict of interest.
* Kevin Kupyzk and Lani Zimmerman(Co-authors) report no conflict of interest.

OBJECTIVES

Upon completion of this presentation, participants will be able to:

1. Evaluate college students who are at increased risk for cardiovascular disease.
2. Identify college students who are at increased risk for cardiovascular risk reduction intervention.

BACKGROUND

- Young adults unrealistic or uninformed about their health and eating habits.
- $1 / 3$ of this population is unaware of risk
- Plaque formation begins in young adulthood
- Why college students?
- Similar education background in a common setting
- Transition from home to college environment
- Approximately 35% of college students are overweight or obese
- Vulnerable population to health issues

PURPOSE

To examine the co-occurrence of cardiovascular risk factors and cluster subgroups of college students, ages 19 to 39, for cardiovascular risks based on socio-demographics, nonmodifiable, and modifiable risk factors.

The overall goal is to identify a target group of individuals at increased risk for cardiovascular disease.

CONCEPTUAL FRAMEWORK

The conceptual models guiding this study were the Health Belief Model and the Information, Motivation and Behavior Skill Model.

METHODS

Research Design. A convenience, cross-sectional, descriptive research study using co-occurrence patterns and hierarchical cluster analysis

Settings and Recruitment. University of Nebraska-Lincoln

- University Health Center and Student Union

Inclusion Criteria: college students between ages 19 to 39 enrolled at the recruited university and weigh at least 110 pounds

Exclusion criteria: diagnosed of CVD such as myocardial infarction, stroke or CHD.

MEASURES

- Socio-demographics
- health history
- Biometrics
- Random blood glucose
- Lipid panels
- Height and weight (BMI)
- Blood pressure
- Risk assessments
- Lifetime atherosclerotic CVD (ASCVD) risk
- 30-year CVD risk (Framingham)

SAMPLE

- 158 participants completed the research for data analysis.
- Average age 24.33 ± 4.61 years old
- Majority were male ($n=72,54.4 \%$), single ($n=131,82.9 \%$), and had insurance coverage ($n=146,93.0 \%$).
- Race/ethnic distribution:
- White 63.1% ($n=99$) ; Asian/Pacific Islander 13.4% ($n=21$)
- African American $8.3 \%(n=13)$; Hispanic or Latino $7.6 \%(n=12)$
- Native American $1.3 \%(n=2)$; Other $6.4 \%(n=10)$

RESULTS

Non-modifiable and modifiable CV risk factors

Reported

51 (32.3\%) Family history of heart disease
12 (7.6\%) Hypertension
11 (7.0\%) Current smokers
2 (1.3\%) Diabetes

Measured
71 (44.9\%) Overweight/obese
20 (12.7\%) Hypertension
6 (3.8\%) Diabetes
5 (3.2\%) Hyperlipidemia

- Significant differences found in the 10 -year and 30 -year CV risk assessments between genders
- Family history of heart disease demonstrated a significant differences in the full 30-year CV risk assessment ($\mathrm{p}=0.022$)
- No differences between White and non-White

RESULTS

- Average DBP, glucose, total cholesterol, LDL-C, HDL-C, and triglycerides were all within normal range.
- Average SBP in prehypertensive stage (122.9) \& Average BMI 25.7
- Average lifetime risk assessment 31.4\%, 30-year CVD 4.8\% (full) and 2.3\% (hard)
- Physical activity most frequently reported were moderate levels ($n=65,41.1 \%$)
- Most reported being active 3-5 times per week ($n=81,51.3 \%$)
- Half ($n=79,50.0 \%$) eat out occasionally (2-3 times per week)
- About 81% of the participants' drink sugary beverages
- 58 (36.7\%) reported occasionally eat red meats

RESULTS

- 75 (47.5\%) no CV risk factors

Co-occurrence of Risk Factors

- 57 (36.1\%) at least one risk factor
- 22 (13.9\%) two risk factors
- 4 (2.5\%) three risk factors.

Total 34 risk factors that cooccurrences, 30 of them involved being overweight/obese.

	n	\% of sample
Overweight \& High blood pressure	17	10.76%
Overweight \& Smoking	6	3.80%
Overweight \& High glucose levels	4	2.53%
Overweight \& Elevated lipid levels	3	1.90%
High glucose levels \& Blood pressure	2	1.27%
High blood pressure \& Smoking	1	0.63%
High glucose levels \& Elevated lipid levels	1	0.63%

Note: $n=26$ had two or more risk factors.

RESULTS

Cluster Analysis Subgroups

	$\begin{aligned} & \text { Cluster } \\ & 1 \\ & n=65 \end{aligned}$	Cluster 2 $n=5$	Cluster 3 $n=60$	Cluster 4 $n=3$	Cluster 5 $n=16$	Cluster 6 $n=5$	p-value
Gender							<. 001
Male	19	5	49	2	7	3	
Female	46	0	11	1	9	2	
Race/Ethnicity							<. 001
White	29	4	50	2	9	2	
Non-White	36	1	10	1	7	3	
Marital status							. 034
Married/Living together	18	1	4	0	2	0	
Single/Divorced	47	4	56	3	14	5	
Insurance (Yes)	65	5	60	3	6	4	<. 001
PMH - Heart Problems (Yes)	0	0	0	3	0	0	<. 001
Family Hx of Heart Disease (Yes)	19	2	22	1	3	3	0.546
Taking Antihypertensive (Yes)	0	5	0	0	0	0	<. 001
High glucose levels (Yes)	0	0	4	0	0	1	0.085
Overweight/Obese (Yes)	8	4	43	2	9	3	<. 001
High blood pressure (Yes)	0	3	15	1	1	0	<. 001
Elevated lipid levels (Yes)	0	0	0	0	0	5	<. 001
Current Smoker (Yes)	0	0	1	0	10	0	<. 001
Physical Activity		$M=3.6$		$M=3.33$. 037
Eat Out							. 047
Drink Sugary Beverages							. 154
Eat Red Meat			$M=2.9$			$M=2.4$	<. 001

CONCLUSIONS

1. College students are a targeted population that could benefit from CV risk reduction since more than 50% of our study population had one or more CV risk factors and should be screened routinely.
2. High risk groups through clustering technique can be used to identify groups of college students to target for interventions.
3. Opportunity for health professional programs in Colleges and Universities to work with health centers and campus administration by instituting risk factors modification programs or events in this population

REFERENCES

- Akhtar, P. C., Haw, S. J., Currie, D. B., Zachary, R., \& Currie, C. E. (2009). Smoking restrictions in the home and secondhand smoke exposure among primary schoolchildren before and after introduction of the Scottish smoke-free legislation. Tobacco Control, 18(5), 409-415. doi:10.1136/tc.2009.030627; 10.1136/tc.2009.030627
- Collins, K. M., Dantico, M., Shearer, N. B. C., \& Mossman, K. L. (2004). Heart disease awareness among college students. Journal of Community Health, 29(5), 405-420.
- Kestila, P., Magnussen, C. G., Viikari, J. S., Kahonen, M., Hutri-Kahonen, N., Taittonen, L., . . . Raitakari, O. T. (2012). Socioeconomic status, cardiovascular risk factors, and subclinical atherosclerosis in young adults: The cardiovascular risk in young Finns study. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(3), 815-821.
- Liu, K., Daviglus, M. L., Loria, C. M., Colangelo, L. A., Spring, B., Moller, A. C., \& Lloyd-Jones, D. M. (2012). Healthy lifestyle through young adulthood and the presence of low cardiovascular disease risk profile in middle age: The coronary artery risk development in (young) adults (CARDIA) study. Circulation, 125(8), 996-1004. doi:10.1161/CIRCULATIONAHA.111.060681
- Loria, C. M., Liu, K., Lewis, C. E., Hulley, S. B., Sidney, S., Schreiner, P. J., . . . Detrano, R. (2007). Early adult risk factor levels and subsequent coronary artery calcification: The CARDIA study. Journal of the American College of Cardiology, 49(20), 2013-2020.
- Pletcher, M. J., Bibbins-Domingo, K., Liu, K., Sidney, S., Lin, F., Vittinghoff, E., \& Hulley, S. B. (2010). Nonoptimal lipids commonly present in young adults and coronary calcium later in life: The CARDIA (coronary artery risk development in young adults) study. Annals of Internal Medicine, 153(3), 137-146. doi:10.1059/0003-4819-153-3-201008030-00004
- Raynor, L. A., Schreiner, P. J., Loria, C. M., Carr, J. J., Pletcher, M. J., \& Shikany, J. M. (2013). Associations of retrospective and concurrent lipid levels with subclinical atherosclerosis prediction after 20 years of follow-up: The coronary artery risk development in young adults (CARDIA) study. Annals of Epidemiology, 23(8), 492-497. doi:10.1016/j.annepidem.2013.06.003
- Sutliffe, J. T., \& Carnot, M. J. (2011). Cardiovascular risk reduction among college students. Family and Consumer Sciences Research Journal, 39(3), 256-266.

