Comparison of EMLA to LMX-4 for Sharp Wound Debridement

July 27, 2017 | Wendy Woith, PhD, RN, FAAN

Conflict of Interest Statement

- The authors have no conflicts of interest to report
- Wendy Woith, Ph.D., RN, FAAN, is the Advocate BroMenn Endowed Professor and holds a joint appointment between Illinois State University and Advocate BroMenn Medical Center.
- Jennifer Perry, BSN, RRN, CHRN, and Jessica Lee, BSN, RN, CHRN, are employed by the Advocate BroMenn Wound Healing Center.
- There were no sponsors for this study.

Objectives

- Upon completion of this session, learners will be better able to:
 - describe differences between EMLA and LMX-4 in managing pain associated with sharp wound debridement.
 - discuss clinical implications associated with using EMLA and LMX-4 for managing pain during sharp wound debridement.

Background

 Sharp wound debridement involves using a scalpel or scissors to remove tissue, and may be painful.

- Eutectic mixture of 2.5% lidocaine and 2.5% prilocaine (EMLA) and 4% liposomal lidocaine cream (LMX-4) are both widely used for topical anesthesia.
- The literature revealed mixed results regarding effectiveness of these agents by location and type of procedure.
- No studies were found comparing EMLA to LMX-4 for sharp debridement.
 ♣ Advocate BroMenn Medical Center

Purpose

 To compare the efficacy of EMLA to LMX-4 in managing pain during sharp wound debridement.

Design

- Randomized 2x2 cross-over design, doubleblinded
 - Group A (n = 20) LMX-4 at first debriding (D1),
 EMLA at second debriding (D2)
 - Group B (n = 20) EMLA at T1, LMX-4 at T2

Setting and Sample

- Wound clinic in Midwest USA
- Typically treats ~5,000 wounds annually
- 40 enrolled (women = 28, men = 12), 32 completed study (women = 23, men = 9); mean age = 64.73 years
 - 75% attrition due to wound healing
 - Wound type: vascular 57.5%, lymph 15%, surgical 13%, other 15%

Procedure

- EMLA for 30 minutes, LMX-4 applied for 15 minutes, both under occlusion
- 1-2 weeks between debridings
- Pain measured at 3 points each debriding using Visual Analog Scale (0 to 10)
- Debriding followed standard practice

Mean Pain Scores of Agents at Three Assessment Points Anesthetic Agent and Time of n Min Max Mean SD

Pain Assessment					
EMLA before procedure	32	0	6	1.42	1.79

32

32

32

32

32

LMX-4 before procedure

EMLA during procedure

LMX-4 during procedure

EMLA after procedure

LMX-4 after procedure

0.83

3.14

3.00

2.19

1.86

6

10

5

1.52

2.85

2.39

1.83

1.93

Mean Pain Scores for Pain Assessment Points by Time of Debridement

2nd debridement:

1st debridement:

2nd debridement:

1st debridement:

2nd debridement:

Pain after procedure

Pain after procedure

Pain after application

Pain during procedure

Pain during procedure

Pain Assessment Points	Anesthetic	Mean	SD	n
1 st debridement:	EMLA	2.06	2.14	16
Pain after application	LMX-4	0.69	1.54	16

EMLA

LMX-4

EMLA

LMX-4

EMLA

LMX-4

EMLA

LMX-4

EMLA

LMX-4

0.81

1.06

3.44

4.00

2.88

2.00

2.56

2.21

1.75

1.38

1.38

1.65

3.32

2.63

2.70

1.63

2.13

2.12

1.61

1.45

16

16

16

16

16

16

16

16

16

16

Mean Pain Scores for Pain Assessment Points /lean

by Treatment Order					
Pain Assessment	Group	Anesthetic Order	M		
Points		(Dehridement 1 or 2)			

Α

В

B

Α

В

LMX-4 (D1)

EMLA (D2)

EMLA (D1)

LMX-4 (D2)

LMX-4 (D1)

EMLA (D2)

EMLA (D1)

LMX-4 (D2)

LMX-4 (D1)

EMLA (D2)

EMLA (D1)

LMX-4 (D2)

Pain after application

Pain during procedure

Pain after procedure

Mean

Difference

-0.12

1.00

1.12

1.44

0.56

1.18

0.69

0.81

2.06

1.06

4.00

2.88

3.44

2.00

2.31

1.75

2.56

1.38

n

16

16

16

16

16

16

16

16

16

16

16

16

Results

- No significant difference between EMLA and LMX-4 in managing pain (t(1,31) = -.892, p = .379)
- Patients had more pain during debriding than at any other time (λ = .369, F(3,28) = 15.964, p < .001)
- Patients had more pain during the first debriding than during the second (D1>D2)
 (λ = .825, F(1,30) = 6.368, p = .017).

Results (con't)

- Group A was more likely to report greater pain during second debriding with EMLA (m = 2.08) than during first debriding with LMX-4 (m = 2.07) (λ = .830, F(1,30) = 2.977, p = .067).
- 41% preferred LMX-4 to EMLA (28%).
- EMLA caused burning upon application lasting up to 5 minutes (n = 5).

Conclusions

- EMLA and LMX-4 were equally effective in managing pain.
- EMLA mean pain scores were higher at all assessment points.
- Patients experienced more pain during debriding than before or after.
- Patients experienced less pain during D2.
 - Some healing occurred between treatments, requiring less tissue removal.
 - Decreased anxiety as a result of knowing what to expect may account for lower pain

Conclusions

- Although patients experienced less pain at D2, Group A reported greater pain at D2 with EMLA. These results bordered on significance and may have affected patient preference for LMX-4.
- Effective pain management was achieved in 30 minutes with EMLA and 15 minutes with LMX-4.

Implications

- Use of LMX-4 may help improve patient satisfaction with sharp wound debridement.
- Less time to effective anesthesia results in shorter time to treatment and shorter length of stay.

References

- Bates-Jensen, B. M., & Apeles, N. C. R. (2006). *Management of necrotic tissue*. In Carrie Sussman & Barbara Bates-Jensen's (3rd ed.) Wound Care A collaborative practice manual for health professionals. Baltimore: Lippincott, Williams & Wilkins.
- Chiang, Y. Z., Al-Niaimi, F., & Madan, V. (2015). Comparative efficacy and patient preference of topical anaesthetics in dermatological laser treatments and skin microneedling. Journal of Cutaneous and Aesthetic Surgery, 8(3), 143-146.
- Eidelman, A., Weiss, J. M., Lau, J., & Carr, D. B. (2005). Topical anesthetics for dermal instrumentation: A systematic review of randomized, controlled trials. *Annals of Emergency Medicine*, *46*(4) 343-351.
- Koppel, R. A., Coleman, K. M., & Coleman, W. P. (2000). The efficacy of EMLA versus ELA-MAX for pain relief in medium-depth chemical peeling: A clinical and histopathologic evaluation. *Dermatologic Surgery*, *26*, 61-64.
- Svensson P., Bjerring, P., Arendt-Nielsen, L., & Kaaber, S. (1992). Hypoanalgesic effect of EMLA and lidocaine gel applied on human oral mucosa: Quantitative evaluation by sensory and pain thresholds to argon laser stimulation. *Anesthesia Progress*, *39*, 4-8.
- Tang, M. B., Goon, A. T., & Goh, C. L. (2004). Study on the efficacy of ELA-Max (4% liposomal lidocaine) compared with EMLA cream (eutectic mixture of local anesthetics) using thermosensory threshold analysis in adult volunteers. *Journal of Dermatological Treatment*, 15(2), 84-87.