

The influence of multimorbidity on rehabilitation outcomes in stroke and amputation

dr. Bianca Buijck Dublin, Ireland, 31th July

Nijmegen GRAMPS study

Geriatric Rehabilitation in

AMPutation and Stroke

dr. Bianca Buijck en dr. Monica van Eijk

GRAMPS research design

Longitudinal

Observational

Multidisciplinary

Multicenter

GRAMPS research design

Patients

- All newly admitted patients in the skilled nursing facility
- Rehabilitation after stroke or amputation
- Skilled nursing facilities from the university knowledge network elderly care Nijmegen
- Informed consent

- Stroke n=186
- Amputation n=48

Amputation

Lower limb amputation yearly in the Netherlands:

```
n = 3200
```

Caused by:

Vascular disease (68 %)

Diabetes (27 %)

Trauma (4 %)

Tumor (1 %)

Stroke

Stroke yearly in the Netherlands:

n = 41.000

80% ischemic stroke

Frail patients on admission

	Amputation		Stroke		
Age	75 years		78.6 years		
Multimorbididty Comorbidity	Myocardial infarction Heart failure Peripheral vasc dis. Diabetes Stroke Maligne	53% 30% 27% 77% 33% 30% 9%	34% 18,5% 15% 13% 18% 100% 6%		
Incontinence (Item Blpm)	Feces Urine	3% 17%	3% 5%		

Comorbidity or multimorbidity

- Charlson Index
- 19 items
- Score for presence and severity
- Myocardial Infarction in the past, and no role of significance at this moment: no score
- Heart failure after Myocardial infarction = score
- Corrected for vascular disease and diabetes

Some limitations for this instrument

Model : univariate and multivariate

All factors in relation with the outcome

Factors with significant relation on the outcome

Factors independently associated with the outcome

Associated

- Question: which factors have a predictive value for outcome at discharge
- Calculated the influence of potential factors
- Only the most relevant factors in the model
- Which factors have independently a predictive value for the rehabilitation outcomes

Stroke multimorbidity

Patients with multimorbidity differed from the patients without multimorbidity with respect to:

- Age
- Proprioception
- Vibration sense

But not for:

- Any of the cognitive tests
- Muscle strength
- Sitting balance

Patients with multimorbidity had, on average, lower scores on outcome measures.

Stroke model 1

Balance:

Multimorbidity

Muscle strength

Interaction between muscle strength & static sitting balance

Stroke model 2

Walking abilities:

Multimorbidity

Muscle strength

Interaction between muscle strength & static sitting balance

Independent living situation

Diabetes Mellitus 47%

Pre operative functioning

Functional status after rehabilitation

Functional status on admission

Pre operative functioning

One leg standing balance

78%

Use of prosthesis

Independent walking

Phantom pain

Amputation level

56%

Timed Up & Go test

Cognitive abilities

Low amputation level

Pre-operative functional abilities

82%

Table 2. Associations for prosthetic use and univariate linear analyses for timed up-and-go test (TUG-test) after rehabilitation for lower limb amputation in skilled nursing facilities (SNFs).

	Prosthetic use			TUG-test			
	n = 19	n = 19		n = 15			
	Yes	No	p value	R ²	Beta	p value	
Age (years)†	73.6	77.4	0.153	0.08	0.79	0.296	
Gender (M/F) ^x	6/13	5/14	0.721	0.30	0.45	0.034	
Length of hospital stay (days)	35	32	0.879	0.05	0.25	0.424	
Amputation level (n)x			0.009	0.25	-23.83	0.056	
- High amputation	5	13					
- Low amputation	14	6					
Impaired wound healingx (%)	16	37	0.141	0.27	29.02	0.047	
Stump pain ^x (%)	37	42	0.740	0.14	-16.48	0.177	
Phantom pain ^x (%)	47	74	0.097	0.13	16.59	0.182	
Multimorbidity*x (%)	53	37	0.328	0.01	1.01	0.936	
CI score (%)	2	1	0.819	0.00	-0.48	0.927	
Diabetes mellitus ^x (%)	58	37	0.194	0.00	-0.24	0.985	
MMSE (0-30)	27	25	0.302	0.60	-5.90	0.001	
Clock drawing test (0-14)	13	10	0.293	0.09	-6.19	0.325	
Barthel Index po (0-30)	20	15	0.004	0.35	-5.58	0.021	
Barthel Index adm (0-30)	12	9	0.306	0.06	-1.69	0.409	
FAI (0-35)	25	16	0.386	0.11	-0.68	0.233	
FAC (0-5)	2	0	0.002	0.08	-4.18	0.313	
One-leg balance ^x (%)			0.011	0.06	-7.88	0.389	
- Not possible	11	26					
- With support	16	53					
- Without support < 10s	37	5					
- Without support > 10s	37	16					

adm, admission; CI score, Charlson Index score; FAI, Frenchay Activities Index; FAC, Functional Ambulation Categories; MMSE, Mini Mental State Examination; po, preoperative. *Multimorbidity was defined as CI score (with peripheral arterial disease and diabetes mellitus excluded) > I; xChi square test; †Students t-test; all others Mann Whitney U test.

Multimorbidity

- In this study multimorbidity has no influence on outcomes for amputation
- Other studies found influence on outcomes but used different and unstandardized instruments
- In this study Charlson Index >1
- Two or more diagnoses next to peripheral vascular diseases
- Distribution of multimorbidity equal for patients with prosthesis or without prosthesis
- Its hard to show a relation with prosthesis use

Conclusion

- Amputation small group in the Netherlands
- Possible overfitting of the models: small sample size
- It is important that nurses have insight in rehabilitation outcome, because the presence of multiple chronic diseases influences the performance of stroke and LLA patients during rehabilitation in het SNF.

References

Spruit-van Eijk M, Zuidema SU, **Buijck** BI, Koopmans RT, Geurts AC. <u>Determinants of rehabilitation outcome in geriatric patients admitted to skilled nursing facilities after stroke: a Dutch multi-centre cohort study.</u>

Age Ageing. 2012 Nov;41(6):746-52.

Eijk MS, van der Linde H, Buijck BI, Zuidema SU, Koopmans RT. Geriatric rehabilitation of lower limb amputees: a multicenter study.

Disabil Rehabil. 2012;34(2):145-50.

van Eijk MS, van der Linde H, **Buijck** B, Geurts A, Zuidema S, Koopmans R. <u>Predicting prosthetic use in elderly patients after major lower limb amputation.</u>

Prosthet Orthot Int. 2012 Mar;36(1):45-52.

Spruit-van Eijk M, Zuidema SU, **Buijck** BI, Koopmans RT, Geurts AC. <u>To what extent can multimorbidity be viewed as a determinant of postural control in stroke patients?</u>

Arch Phys Med Rehabil. 2012 Jun;93(6):1021-6.