The influence of multimorbidity on rehabilitation outcomes in stroke and amputation

dr. Bianca Buijck
Dublin, Ireland, 31th July
Nijmegen GRAMPS study

Geriatric Rehabilitation in AMPutation and Stroke

dr. Bianca Buijck en dr. Monica van Eijk
GRAMPS research design

Longitudinal

Observational

Multidisciplinary

Multicenter
GRAMPS research design

Patients

• All newly admitted patients in the skilled nursing facility

• Rehabilitation after stroke or amputation

• Skilled nursing facilities from the university knowledge network elderly care Nijmegen

• Informed consent

- Stroke n=186
- Amputation n=48
Amputation

Lower limb amputation yearly in the Netherlands:

\(n = 3200 \)

Caused by:

- Vascular disease (68 %)
- Diabetes (27 %)
- Trauma (4 %)
- Tumor (1 %)
Stroke

Stroke yearly in the Netherlands:

n = 41,000

80% ischemic stroke
Frail patients on admission

<table>
<thead>
<tr>
<th>Age</th>
<th>Amputation</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 years</td>
<td></td>
<td>78.6 years</td>
</tr>
</tbody>
</table>

Multimorbidity Comorbidity

<table>
<thead>
<tr>
<th>Condition</th>
<th>Amputation</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarction</td>
<td>53%</td>
<td>34%</td>
</tr>
<tr>
<td>Heart failure</td>
<td>30%</td>
<td>18.5%</td>
</tr>
<tr>
<td>Peripheral vasc dis.</td>
<td>27%</td>
<td>15%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>77%</td>
<td>13%</td>
</tr>
<tr>
<td>Stroke</td>
<td>33%</td>
<td>18%</td>
</tr>
<tr>
<td>Maligne</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>Incontinence (Item BIpm)</td>
<td>9%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Incontinence (Item BIpm)

<table>
<thead>
<tr>
<th>Type</th>
<th>Amputation</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feces</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Urine</td>
<td>17%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Comorbidity or multimorbidity

• Charlson Index
• 19 items
• Score for presence and severity
• Myocardial Infarction in the past, and no role of significance at this moment: no score
• Heart failure after Myocardial infarction = score
• Corrected for vascular disease and diabetes

Some limitations for this instrument
Model: univariate and multivariate

- All factors in relation with the outcome
- Factors with significant relation on the outcome
- Factors independently associated with the outcome
Associated

- Question: which factors have a predictive value for outcome at discharge
- Calculated the influence of potential factors
- Only the most relevant factors in the model
- Which factors have independently a predictive value for the rehabilitation outcomes
Stroke multimorbidity

Patients with multimorbidity differed from the patients without multimorbidity with respect to:

• Age
• Proprioception
• Vibration sense

But not for:

• Any of the cognitive tests
• Muscle strength
• Sitting balance

Patients with multimorbidity had, on average, lower scores on outcome measures.
Stroke model 1

Balance:

Multimorbidity
Muscle strength
Interaction between muscle strength & static sitting balance

66%
Stroke model 2

Walking abilities:

- Multimorbidity
- Muscle strength

Interaction between muscle strength & static sitting balance 67%
Amputation model 1

Independent living situation

Diabetes Mellitus
Pre operative functioning

47%
Amputation model 2

Functional status after rehabilitation

Functional status on admission
Pre operative functioning 78%
One leg standing balance
Amputation model 3

Use of prosthesis

Independent walking
Phantom pain

Amputation level

56%
Amputation model 4

Timed Up & Go test

Cognitive abilities
Low amputation level
Pre-operative functional abilities

82%
Table 2. Associations for prosthetic use and univariate linear analyses for timed up-and-go test (TUG-test) after rehabilitation for lower limb amputation in skilled nursing facilities (SNFs).

<table>
<thead>
<tr>
<th></th>
<th>Prosthetic use</th>
<th></th>
<th>TUG-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 19)</td>
<td>(n = 19)</td>
<td>(n = 15)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>(p \text{ value})</td>
</tr>
<tr>
<td>Age (years)(^{1})</td>
<td>73.6</td>
<td>77.4</td>
<td>0.153</td>
</tr>
<tr>
<td>Gender (M/F)(^{2})</td>
<td>6/13</td>
<td>5/14</td>
<td>0.721</td>
</tr>
<tr>
<td>Length of hospital stay (days)</td>
<td>35</td>
<td>32</td>
<td>0.079</td>
</tr>
<tr>
<td>Amputation level (n)^{3}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>- High amputation</td>
<td>5</td>
<td>13</td>
<td>0.009</td>
</tr>
<tr>
<td>- Low amputation</td>
<td>14</td>
<td>6</td>
<td>()</td>
</tr>
<tr>
<td>Impaired wound healing (%)</td>
<td>16</td>
<td>37</td>
<td>0.141</td>
</tr>
<tr>
<td>Stump pain (%)</td>
<td>37</td>
<td>42</td>
<td>0.740</td>
</tr>
<tr>
<td>Phantom pain (%)</td>
<td>47</td>
<td>74</td>
<td>0.067</td>
</tr>
<tr>
<td>Multimorbidity(^{4}) (%)</td>
<td>53</td>
<td>37</td>
<td>0.328</td>
</tr>
<tr>
<td>CI score (%)</td>
<td>2</td>
<td>1</td>
<td>0.819</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>58</td>
<td>37</td>
<td>0.194</td>
</tr>
<tr>
<td>MMSE (0–30)</td>
<td>27</td>
<td>25</td>
<td>0.302</td>
</tr>
<tr>
<td>Clock drawing (0–14)</td>
<td>13</td>
<td>10</td>
<td>0.293</td>
</tr>
<tr>
<td>Barthel Index po (0–30)</td>
<td>20</td>
<td>25</td>
<td>0.004</td>
</tr>
<tr>
<td>Barthel Index adm (0–30)</td>
<td>12</td>
<td>9</td>
<td>0.306</td>
</tr>
<tr>
<td>FAI (0–35)</td>
<td>25</td>
<td>16</td>
<td>0.386</td>
</tr>
<tr>
<td>FAC (0–5)</td>
<td>2</td>
<td>0</td>
<td>0.002</td>
</tr>
<tr>
<td>One-leg balance (%)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>- Not possible</td>
<td>11</td>
<td>26</td>
<td>()</td>
</tr>
<tr>
<td>- With support</td>
<td>16</td>
<td>53</td>
<td>()</td>
</tr>
<tr>
<td>- Without support < 10s</td>
<td>37</td>
<td>5</td>
<td>()</td>
</tr>
<tr>
<td>- Without support > 10s</td>
<td>37</td>
<td>16</td>
<td>()</td>
</tr>
</tbody>
</table>

\(^{1}\) Charlson Index score; 2 Charlson Index score; FAC, Functional Ambulation Categories; MMSE, Mini Mental State Examination; 3 preoperative. \(^{4}\) Multimorbidity was defined as CI score (with peripheral arterial disease and diabetes mellitus excluded) > 1; \(^{2}\) Chi square test; \(^{3}\) Students t-test; all others Mann Whitney U test.
Multimorbidity

- In this study multimorbidity has no influence on outcomes for amputation
- Other studies found influence on outcomes but used different and unstandardized instruments
- In this study Charlson Index >1
- Two or more diagnoses next to peripheral vascular diseases
- Distribution of multimorbidity equal for patients with prosthesis or without prosthesis
- Its hard to show a relation with prosthesis use
Conclusion

• Amputation small group in the Netherlands

• Possible overfitting of the models: small sample size

• It is important that nurses have insight in rehabilitation outcome, because the presence of multiple chronic diseases influences the performance of stroke and LLA patients during rehabilitation in het SNF.
References

