

Hemostasis Methods Used In Cardiac Patients Post Percutanous Coronary Intervention **Brittany Curry, RN, BSN, PCCN**

NURO 540 Department of Nursing, Georgetown University School of Nursing & Health Studies, Washington, D.C.

Purpose

Department of Nursing

- To identify which hemostasis method is preferred for use during percutaneous coronary intervention to reduce risks for vascular complications
- To identify if arterial closure devices are superior to manual compression in reducing complications

PICOT Question

In cardiac patients post femoral sheath removal, how does manual compression compared to an assisted closure device affect the risk for vascular complications over a 24-hour period?

Summary of Problem

- Complications such as hematoma, bleeding, infection, hypotension, pseudoaneurysm, lead to patient injury
- Manual compression requires intense physical exertion for 15-20 minutes
- Increased hospital length of stay and costs, morbidity and mortality (Merriweather & Sulzbach-Hoke, 2012)
- 25% of total costs were associated with PCI complications (Jacobson, Long, McMurtry, Naessens, & Rihal, 2007)

Search Strategy

Databases: CINAHL and PubMed **Search Terms**: vascular closure devices, manual compression, femoral artery, sheath removal and arterial closure device

Inclusion Criteria: Published in English, within the last 10 years, human subjects, clinical trials, systematic reviews, full text

Exclusion Criteria: Not published in English, younger than 18 years old,

animals

Results: 10 results yielding 6 RCTs, 1 Meta-Analysis, 1 Comparative (Cohort) Study, 1 Descriptive Correlational Study, 1 Retrospective (Case Control) Review

Table of Evidence

Citation	Summary	Melnyk & Fineout- Overholt's Hierarchy of Evidence	
Allen et al. (2011)	Comparison (Cohort) Study. ACDs after PCI had lower incidence of major bleeding compared to MC	Level III	
Behan et al. (2007)	RCT. AS has shorter time to mobilization, less bruising, and no increased risk for vascular complications	Level II	
Dueling et all. (2008)	RCT. ACDs are superior to MC in terms of patient comfort, ambulation, and risk for vascular complication	Level II	
Goswami et al. (2015)	RCT. BW in adjunct with MC has lower rates of complications and can significantly reduce TTH and TTA	Level II	
Hamner et al. (2006)	Descriptive Correlational Study. Previous use of ACD is strongest predictor of vascular complications	Level V	Unfre
Holm et al. (2014)	RCT. FS ACD is associated with significantly fewer hematomas compared to MC	Level II	
Martin et al. (2008)	RCT. AS is associated with shorter TTA and TTH compared to MC. Major vascular complications were NS among the methods.	Level II	
Schulz- Schupke et al. (2014)	RCT. ACDs are non-inferior to MC in terms of vascular access-site complications	Level II	Chai
Smilowitz et al. (2012)	Retrospective Review (Case Control Study). No consensus that ACDs safety is superior to MC	Level V	
Jiang et al. (2015)	Meta-Analysis. Newer ACDs show improvement in device design, safety and show significantly decreased rates of vascular adverse events	Level I	Refre

Legend: ACD-Arterial Closure Device, AS-Angioseal, BW-Boomerang Wire, FS-Femoseal, MC-Manual Compression, NS-NonSignificant, PCI-Percutaneous Coronary Intervention, RCT-Randomized Control Trial, TTA-Time to Ambulation, TTH-Time to Hemostasis

Melnyk & Fineout-Overholt's Hierarchy of Evidence

Level I: Systematic Reviews & Meta-Analysis

Level II: RCTs

Level III: Controlled Cohort Studies Level IV: Uncontrolled Cohort Studies

Level V: Case Studies and Case Series, Qualitative & Descriptive Studies, EBP Implementation & QI

Projects

Level VI: Expert Opinion

EBP Model - ACE Star

Lewin's Change Theory

Ready for change

- Meet with stakeholders and facilitators to establish means for change by reviewing current percutaneous coronary intervention protocols
- Identify percentage of complications associated with manual

Execute change

- Luncheon with vascular device representatives
- Physicians choose device
- Hospital provides continuing education, certifications and training
- Screen patients and provide information
- 6 month pilot study

Making change permanent

- Evaluate and follow-up based on "green" checklist completed by
- Continue certifications by surgeons who perform femoral access procedures

(Morrison, 2015)

Recommendation for Practice Change

- Consistent findings from quality evidence were associated with reduced risks and vascular complications with the use of arterial closure devices versus manual compression
- Evidence supports "strong" recommendation for change (Guyatt et al.,
- Utilize vascular devices during all diagnostic and elective percutaneous coronary intervention (PCI)

Components of Change

Stakeholders

Cardiac patients undergoing PCI, RNs, NPs, Cardiovascular Surgeons, Interventional Cardiologists, Vascular Surgeons

Facilitators

- Physician Champion (educated and experienced in the devices)
- Nurse Champion (who works along with physician to implement the change)
- Cardiac Units Nurse Managers and Charge RNs
- Nurse Educator
- Cardiology Nurse Practitioners

Barriers

- Physicians preference and experience using devices
- Nursing staff perspectives
- Contraindications to using the vascular device Hospital cost

EBP Evaluation

Formative

Track each patient's recovery and/or complications using a designated "green" checklist weekly

Summative

- # of days in hospital
- # of complications over a 6 month period determined at follow up appointment with Cardiologist
- # of patients with vascular device satisfied with their recovery based on Care Card scores
 - Rated 1-5 (1 unsatisfied, 5 satisfied)

Practice Implications

- Decrease post PCI complications
- Decrease hospital length of stay
- Decrease hospital cost
- Decrease staffing for nurses
- Decrease time to ambulation

References

Refer to handout

Post Percutaneous Coronary Intervention Checklist January 2016 - June 2016

Hemostasis Method:				Antico	Anticoagulation:			
Time to Hemostasis:				Time to Ambulation:				
	6 hours	12 hours	24 hours	30 hours	36 hours	If yes, please make comment.		
Bleeding, oozing at site								
Retroperitoneal								

пешающа

Pseudoaneurysm

Infection

Time of

Discharge