Hemostasis Methods Used In Cardiac Patients Post Percutaneous Coronary Intervention

Brittany Curry, RN, BSN, PCCN

NURO 540 Department of Nursing, Georgetown University School of Nursing & Health Studies, Washington, D.C.

Purpose
- To identify which hemostasis method is preferred for use during percutaneous coronary intervention to reduce risks for vascular complications
- To identify if arterial closure devices are superior to manual compression in reducing complications

PICOT Question
In cardiac patients post femoral sheath removal, how does manual compression compared to an assisted closure device affect the risk for vascular complications over a 24-hour period?

Summary of Problem
- Complications such as hematoma, bleeding, infection, hypotension, pseudoneumothorax, lead to patient injury
- Manual compression requires intense physical exertion for 15-20 minutes
- Increased hospital length of stay and costs, morbidity and mortality (Merriweather & Sulzbach-Hoke, 2012)
- 25% of total costs were associated with PCI complications (Jacobson, Long, McMurtry, Naessens, & Rihal, 2007)

Search Strategy
- Databases: CINAHL and PubMed
- Search Terms: vascular closure devices, manual compression, femoral artery, sheath removal and arterial closure device

Inclusion Criteria:
- Published in English, within the last 10 years, human subjects, clinical trials, systematic reviews, full text

Exclusion Criteria: Not published in English, younger than 18 years old, animals

Results: 10 results yielding 6 RCTs, 1 Meta-Analysis, 1 Comparative (Cohort) Study, 1 Descriptive Correlation Study, 1 Retrospective (Case Control) Review

Table of Evidence

<table>
<thead>
<tr>
<th>Citation</th>
<th>Summary</th>
<th>Melnyk & Fineout-Overholt’s Hierarchy of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen et al. (2011)</td>
<td>Comparison (Cohort) Study. ACDs after PCI had lower incidence of major bleeding compared to MC</td>
<td>Level III</td>
</tr>
<tr>
<td>Behan et al. (2007)</td>
<td>RCT: AS has shorter time to mobilization, less bruising, and no increased risk for vascular complications</td>
<td>Level II</td>
</tr>
<tr>
<td>Duling et al. (2008)</td>
<td>RCT: ACDS are superior to MC in terms of patient comfort, ambulation, and risk for vascular complication</td>
<td>Level II</td>
</tr>
<tr>
<td>Goswami et al. (2015)</td>
<td>RCT: BW in adjunct with MC has lower rates of complications and can significantly reduce TTH and TTA</td>
<td>Level II</td>
</tr>
<tr>
<td>Hamner et al. (2006)</td>
<td>Descriptive Correlational Study. Previous use of ACD is strongest predictor of vascular complications</td>
<td>Level V</td>
</tr>
<tr>
<td>Holm et al. (2014)</td>
<td>RCT: FS ACD is associated with significantly fewer hematomas compared to MC</td>
<td>Level II</td>
</tr>
<tr>
<td>Martin et al. (2008)</td>
<td>RCT: AS is associated with shorter TTA and TTH compared to MC. Major vascular complications were NS among the methods.</td>
<td>Level II</td>
</tr>
<tr>
<td>Schulz-Schupke et al. (2014)</td>
<td>RCT: ACDS are non-inferior to MC in terms of vascular access-site complications</td>
<td>Level II</td>
</tr>
<tr>
<td>Smilowitz et al. (2012)</td>
<td>Retrospective Review (Case Control Study). No consensus that ACDs safety is superior to MC</td>
<td>Level V</td>
</tr>
<tr>
<td>Jiang et al. (2015)</td>
<td>Meta-Analysis. Newer ACDs show improvement in device design, safety and show significantly decreased rates of vascular adverse events</td>
<td>Level I</td>
</tr>
</tbody>
</table>

Legend: ACD-Arterial Closure Device, AS-Angioguide, BW-Boomerang Wire, FS-FemoSeal, MC-Manual Compression, NS-NonSignificant, PCI-Percutaneous Coronary Intervention, RCT-Randomized Control Trial, TTA-Time to Ambulation, TTH-Time to Hemostasis

Melnyk & Fineout-Overholt’s Hierarchy of Evidence
- Level I: Systematic Reviews & Meta-Analysis
- Level II: RCTs
- Level III: Controlled Cohort Studies
- Level IV: Uncontrolled Cohort Studies
- Level V: Case Studies and Case Series, Qualitative & Descriptive Studies, EBP Implementation & QI Projects
- Level VI: Expert Opinion

EBP Model - ACE Star

1. Discovery
2. Evaluation
3. Translation
4. Integration
5. Refreeze

(Stevens, 2012)

Components of Change
- Stakeholders: Cardiac patients undergoing PCI, RNs, NPs, Cardiovascular Surgeons, Interventional Cardiologists, Vascular Surgeons
- Facilitators: Physician Champion (educated and experienced in the devices)
- Barriers: Physicians preference and experience using devices

EBP Evaluation
- **Formative**
 - Track each patient’s recovery and/or complications using a designated “green” checklist weekly
- **Summative**
 - # of days in hospital
 - # of complications over a 6 month period determined at follow up appointment with Cardiologist
 - # of patients with vascular device satisfied with their recovery based on Care Card scores
 - Rated 1-5 (1 unsatisfied, 5 satisfied)

Practice Implications
- Decrease post PCI complications
- Decrease hospital length of stay
- Decrease hospital cost
- Decrease staffing for nurses
- Decrease time to ambulation

Recommendation for Practice Change
- Consistent findings from quality evidence were associated with reduced risks and vascular complications with the use of arterial closure devices versus manual compression
- Evidence supports “strong” recommendation for change (Guyatt et al., 2008)
- Utilize vascular devices during all diagnostic and elective percutaneous coronary intervention (PCI)

References
- Refer to handout
<table>
<thead>
<tr>
<th>Hemostasis Method:</th>
<th>Anticoagulation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Hemostasis:</td>
<td>Time to Ambulation:</td>
</tr>
<tr>
<td></td>
<td>6 hours</td>
</tr>
<tr>
<td>Bleeding, oozing at site</td>
<td></td>
</tr>
<tr>
<td>Retroperitoneal Hematoma</td>
<td></td>
</tr>
<tr>
<td>Pseudoaneurysm</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td></td>
</tr>
<tr>
<td>Time of Discharge</td>
<td></td>
</tr>
</tbody>
</table>