The impact of adding nursing support workers on patient, nurse and system outcomes

REDESIGNING THE NURSING WORKFORCE
Michael Roche, Christine Duffield, Di Twigg
Researchers

- **Professor Christine Duffield**
 - University of Technology, Sydney, NSW
- **Professor Di Twigg**
 - Edith Cowan University, WA
- **Professor Anne Williams**
 - Murdoch University, WA
- **Dr. Michael Roche**
 - University of Technology, Sydney, NSW
- **Ms Karen Bradley**
 - WA Department of Health
- **Adjunct Professor Sue Davis**
 - Sir Charles Gairdner Hospital, WA
- **Professor Sean Clarke**
 - Boston College, Massachusetts, USA

Introduction & Context

Nurse Outcomes

Patient Outcomes

System Outcomes

Summary & Conclusion
Nursing Support Worker Titles

• Unregulated nursing workers are known by a range of titles including:
 • Unlicensed assistive personnel (United States)
 • Health care assistants (United Kingdom and Australia)
 • Personal care attendants or assistants in nursing (Australia)
 • Medical assistant, patient care technician, care extender, nurse aide, nursing orderlies and attendants

• In our study we will talk about assistants in nursing (AINs) or nursing support workers
 • They undertake delegated nursing tasks under the supervision of regulated/licensed nursing staff within a nursing team
 • They have limited educational preparation – at most a few weeks of theory followed by clinical practice
 • In some jurisdictions in Australia they may be pre-registration undergraduate nursing students
Redesigning Nursing Work

• Two ways to introduce nursing support workers to a ward or unit
 • Either can potentially change the mix of staff, approach to care on a ward/unit, and impact on patients and staff

• The first is a substitutive model of nurse staffing whereby regulated staff (RNs) are replaced by unregulated nursing support workers
 • Hours of care remain the same but provided by less qualified staff (Roche et al., 2012)

• The second is a supportive or complementary model whereby unregulated nursing support workers are added to ward staffing
 • The total number of hours of patient care provided increases and the number of hours provided by RNs is maintained (Carrigan, 2009)

• Both methods have implications for the way patients are assigned to caregivers and the work caregivers may then undertake
Implications for the Model of Care (Duffield et al. 2010)

• Task assignment was used:
 • With a poorer skill mix (fewer RNs)
 • When staff were unfamiliar with the ward and patients
 • Can lead to issues with continuity of care because work is divided into tasks and different staff members undertake different tasks for the same patients
 • Usually the RN addresses more complex tasks, whereas lesser skilled staff (nursing support workers) undertake more routine tasks

• Patient allocation was used when staffing included:
 • More RNs
 • More RNs with degrees
 • More advanced practice clinical nurse consultants
Drivers for Change (1)

1. Workforce shortages

- Nursing workforce “sustainability” is “…a focus on maintaining numbers in the workforce, or achieving a predefined target of net growth in staffing, or reducing the relative level of reliance on international recruitment” (Buchan, 2015 p. 6)

- In this context workforce supply in Australia is unsustainable (Duffield in Buchan, 2015)
 - Australia continues to rely on migration

- Projections of nursing shortages estimated to be 123,000 nurses by 2030 (Health Workforce Australia, 2014)
 - We will require a 16.5% increase (13600) in AINs by 2016/2017
Drivers for Change (2)

2. Increased workload:
 • Limits the time nurses have for patient contact (Duffield et al., 2011; Williams et al., 2008)
 • Results in insufficient time to provide care to patients
 • Critical tasks such as the administration of pain relief, hygiene and skin care undone/delayed (Duffield et al., 2011; Roche et al., 2016)
 • Decreases opportunity to deliver quality emotional-care (Williams et al., 2008)
 • Contributes to nurses’ job dissatisfaction, influencing their decision to resign from their positions (Duffield et al., 2009; Roche et al., 2015a, 2015b)
Potential Outcomes of *Adding* AINs on Nursing Work

- **Task shifting** between regulated and unregulated roles such as:
 - A decrease in the amount of time registered nurses spend on non-value adding tasks (e.g. administration and transport)
 - Increased direct patient care activities for registered nurses (e.g. assessment, clinical procedures)
 - Reduced nurses’ workloads
 - Increased patient contact and the provision of emotional care
Potential Outcomes of Adding AINs on Approach to Care

- **Rounding**
 - Scheduled visits made to patients in hospital rooms to address immediate patient needs
 - A common use of nursing support workers
 - Associated with positive patient outcomes & improved patient safety:
 - Reduced patient falls (Woodard, 2009)
 - Reduced use of the call bell (Woodard, 2009)
 - Fewer work interruptions (Shepard, 2013)
 - Consistency and continuity of patient care (Meade, Bursell, & Ketelsen, 2006)
 - Improved patient satisfaction (Meade, Bursell, & Ketelsen, 2006)
Background to Research

• Increasing registered nurse numbers to mitigate work intensification is unlikely given projected workforce shortages

• Previous studies have looked at the replacement of registered nurses with nursing support workers

• No study was found which examined the impact of the addition of nursing support workers to existing staffing in acute care settings

• The potentially positive aspects of adding nursing support workers to the quality of care patients receive and staff perceptions of changes to workload, job satisfaction and the work environment have not been systematically evaluated

• Western Australia is the first and only State to complement nurse staffing with AINs
PROTOCOL

A protocol to assess the impact of adding nursing support workers to ward staffing

Christine Duffield, Michael Roche, Di Twigg, Anne Williams & Sean Clarke

Accepted for publication: 14 February 2016

Correspondence to M. Roche:
E-mail: michael.roche@uts.edu.au

Christine Duffield PhD SNRN RN
Professor/Director
Centre for Health Services Management,
University of Technology Sydney,
New South Wales, Australia

Michael Roche BScNurs MHPc PhD
Director of Postgraduate Nursing Studies/Senior Lecturer
Centre for Health Services Management,
University of Technology Sydney,
New South Wales, Australia

Di Twigg BScNurs MBA PhD
Professor/Head of School
School of Nursing and Midwifery,
Edith Cowan University, Perth, Western Australia, Australia

Anne Williams MSc PhD RN
Professor
Murdoch University, Perth, Western Australia, Australia

Sean Clarke PhD FAAN RN
Professor and Associate Dean
William F. Connell School of Nursing,
Boston College, Chestnut Hill,
Massachusetts, USA

DUFFIELD C., ROCHE M., TWIGG D., WILLIAMS A. & CLARKE S. (2016) A protocol to assess the impact of adding nursing support workers to ward staffing. Journal of Advanced Nursing 00(0), 000–000. doi: 10.1111/jan.12965

ABSTRACT

Aim. To assess the impact of adding nursing support workers to ward staffing.

Background. Nurses’ capacity to provide safe care is compromised by increased workloads and nursing shortages. Use of unregulated workers is an alternative to increasing the number of regulated nurses. The impact of adding nursing support workers on patient, nurse and system outcomes has not been systematically evaluated.

Design. A mixed longitudinal and cross-sectional design using administrative data sets and prospective data from a sample of wards.

Methods. Payroll data will identify wards on which unregulated staff work. To assess the impact on nursing-sensitive outcomes, retrospective analysis of morbidity and mortality data of all patients admitted to Western Australia hospitals over four weeks across 4 years will be undertaken. For the cross-sectional study, a sample of 20 pairs of matched wards will be selected: 10 with unregulated workers added and 10 where they have not. From this sample the impact on patients will be assessed using the Patient Evaluation of Emotional Care during Hospitalisation survey. The impact on nurses will be assessed by a nurse survey used extensively which includes variables such as job satisfaction and intention to leave. The impact on system outcomes will be explored using work sampling of staff activities and the Practice Environment Scale. Interviews will determine nurses’ experience of working with nursing support workers.

Discussion. The study aims to provide evidence about the impact of adding nursing support workers to ward staffing for patients, staff and the work environment.

Keywords: assistants in nursing, nursing support workers, nursing work organisation, nursing workload, skill mix
Aims

Determine the impact of the addition of AINs to nursing wards on...

Nurse outcomes

Patient outcomes

System outcomes
The Study

• Longitudinal
 • Two years of data *before* and two years *after* the addition of AINs

• Prospective
 • 5 pairs of wards
 • 5 wards where AIN resources were *added*
 • 5 wards where AIN resources were *not added*
 • 3 pairs of wards (6 wards) from large teaching hospitals
 • 2 pairs of wards (4 wards) from smaller non-teaching & regional hospitals
Ward Matching – Prospective Data

<table>
<thead>
<tr>
<th>Hospital</th>
<th>NHpPD Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>Y</td>
<td>D</td>
</tr>
<tr>
<td>Z</td>
<td>B</td>
</tr>
<tr>
<td>Z</td>
<td>B</td>
</tr>
<tr>
<td>Z</td>
<td>C</td>
</tr>
</tbody>
</table>

- For prospective data collection, wards were matched using workload categories:
 - e.g. a Category B ward with no added AIN staff was matched with a Category B ward where AIN resources had been added
Patient Outcomes
Patient Outcomes

Nursing Sensitive Outcomes

- Longitudinal Data
- n=256,302

The Patient Evaluation of Emotional Care during Hospitalisation

- Prospective Data
- PEECH (Williams & Kristjanson 2009)
- n=141
Staffing Model in Western Australia

- NHpPD model introduced in 2002 to ensure adequate nurse staffing
- Each ward assigned to a category (A-D) dependent on the complexity and diversity of patients, and the nursing tasks required to care for them
- Each category is allocated a staffing level per occupied bed day
- The required staffing is determined by multiplying the occupied bed days by the category staffing level to give the hours per day
- Wards are then expected to staff at this level
- Monitored by NMO
Nurse Sensitive Outcomes

• Administrative patient data obtained from WA Data Linkage Branch
• Staffing data obtained from NMO
• Data from 11 hospitals in Perth metro area
• 33 AIN wards and 31 non-AIN wards
NHpPD of Wards Included in Longitudinal Data Analysis

<table>
<thead>
<tr>
<th>Category</th>
<th>NHpPD</th>
<th>AIN wards</th>
<th>Non-AIN wards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>A</td>
<td>7.5</td>
<td>2</td>
<td>6.06</td>
</tr>
<tr>
<td>B</td>
<td>6.0</td>
<td>15</td>
<td>45.45</td>
</tr>
<tr>
<td>C</td>
<td>5.75</td>
<td>8</td>
<td>24.24</td>
</tr>
<tr>
<td>D</td>
<td>5.0</td>
<td>8</td>
<td>24.24</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
Longitudinal Data Sample

<table>
<thead>
<tr>
<th></th>
<th>Pre-test n=125,762</th>
<th></th>
<th>Post-test n=130,540</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>63.65</td>
<td>19.85</td>
<td>18</td>
<td>107</td>
</tr>
<tr>
<td>DRG cost weight</td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>2.34</td>
<td>2.88</td>
<td>0.13</td>
<td>37.06</td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>8.09</td>
<td>9.83</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>Group</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Surgical</td>
<td>80,605</td>
<td>64.09</td>
<td>86,543</td>
<td>66.30</td>
</tr>
<tr>
<td>Medical</td>
<td>45,157</td>
<td>35.91</td>
<td>43,997</td>
<td>33.70</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>64,043</td>
<td>50.92</td>
<td>67,682</td>
<td>51.85</td>
</tr>
<tr>
<td>Female</td>
<td>61,719</td>
<td>49.08</td>
<td>62,858</td>
<td>48.15</td>
</tr>
<tr>
<td>Season</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autumn</td>
<td>31,613</td>
<td>25.14</td>
<td>32,704</td>
<td>25.05</td>
</tr>
<tr>
<td>Winter</td>
<td>32,326</td>
<td>25.70</td>
<td>33,646</td>
<td>25.77</td>
</tr>
<tr>
<td>Spring</td>
<td>32,108</td>
<td>25.53</td>
<td>34,180</td>
<td>26.18</td>
</tr>
<tr>
<td>Summer</td>
<td>29,715</td>
<td>23.63</td>
<td>30,010</td>
<td>22.99</td>
</tr>
</tbody>
</table>
Analytical Approach

Pre/Post Analyses
- Based on data from the pre-test period, data were modelled to predict the NSO numbers for the post-test period.
- Adjusted logistic regression models were developed for each NSO.
- Predicted probabilities were adjusted by the proportion of time spent in AIN/non-AIN wards to provide an expected number for each NSO.
- Chi-square was used to test the differences between the expected and observed frequency.

Post-Only Analyses
- Adjusted logistic regression models were developed for each NSO.
- Three explanatory variables:
 - Proportion of length of stay on AIN wards.
 - The number of ward changes (transfers).
 - Proportion of length of stay spent on a low skillmix ward.
 - Defined as RN%<72.87% (the lowest quartile of skillmix).
Patient Outcomes: Pre-Post Analysis

All AIN wards

<table>
<thead>
<tr>
<th>NSO</th>
<th>Observed</th>
<th>Expected</th>
<th>Difference</th>
<th>Increase or decrease (of observed NSOs to expected NSOs)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to rescue</td>
<td>485</td>
<td>417</td>
<td>68</td>
<td>Increase</td>
<td>0.018*</td>
</tr>
<tr>
<td>Mortality</td>
<td>1122</td>
<td>1230</td>
<td>-108</td>
<td>Decrease</td>
<td>0.024*</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>4025</td>
<td>3821</td>
<td>204</td>
<td>Increase</td>
<td>0.017*</td>
</tr>
<tr>
<td>Pressure injury</td>
<td>633</td>
<td>623</td>
<td>10</td>
<td>Increase</td>
<td>0.777</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>2112</td>
<td>1992</td>
<td>120</td>
<td>Increase</td>
<td>0.056</td>
</tr>
<tr>
<td>Sepsis</td>
<td>807</td>
<td>783</td>
<td>24</td>
<td>Increase</td>
<td>0.544</td>
</tr>
<tr>
<td>Falls</td>
<td>504</td>
<td>339</td>
<td>165</td>
<td>Increase</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

All Non-AIN wards

<table>
<thead>
<tr>
<th>NSO</th>
<th>Observed</th>
<th>Expected</th>
<th>Difference</th>
<th>Increase or decrease (of observed NSOs to expected NSOs)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to rescue</td>
<td>461</td>
<td>406</td>
<td>55</td>
<td>Increase</td>
<td>0.052</td>
</tr>
<tr>
<td>Mortality</td>
<td>1244</td>
<td>1238</td>
<td>6</td>
<td>Increase</td>
<td>0.903</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>3426</td>
<td>3467</td>
<td>-41</td>
<td>Decrease</td>
<td>0.614</td>
</tr>
<tr>
<td>Pressure injury</td>
<td>599</td>
<td>603</td>
<td>-4</td>
<td>Decrease</td>
<td>0.908</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>1972</td>
<td>2186</td>
<td>-214</td>
<td>Decrease</td>
<td>0.001*</td>
</tr>
<tr>
<td>Sepsis</td>
<td>962</td>
<td>945</td>
<td>17</td>
<td>Increase</td>
<td>0.695</td>
</tr>
<tr>
<td>Falls</td>
<td>376</td>
<td>265</td>
<td>111</td>
<td>Increase</td>
<td><0.001*</td>
</tr>
</tbody>
</table>
Patient Outcomes: AIN wards, Post-onlyご利用

<table>
<thead>
<tr>
<th>Patient Outcome</th>
<th>Frequency (%)</th>
<th>c-statistic</th>
<th>% Correctly Classified</th>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to Rescue</td>
<td>1196 (12.59%)</td>
<td>72%</td>
<td>87.4</td>
<td>AIN time low skill mix</td>
<td>1.00</td>
<td>(0.98, 1.02)</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>(0.96, 1.01)</td>
<td>0.211</td>
</tr>
<tr>
<td>Mortality</td>
<td>2891 (2.22%)</td>
<td>84%</td>
<td>97.8</td>
<td>AIN time low skill mix</td>
<td>0.99</td>
<td>(0.98, 1.00)</td>
<td>0.276</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>(0.98, 1.01)</td>
<td>0.247</td>
</tr>
<tr>
<td>UTI</td>
<td>8496 (6.49%)</td>
<td>78%</td>
<td>93.4</td>
<td>AIN time low skill mix</td>
<td>1.01</td>
<td>(1.00, 1.01)</td>
<td>0.035*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.03</td>
<td>(1.02, 1.04)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Pressure injury</td>
<td>1451 (1.11%)</td>
<td>84%</td>
<td>98.9</td>
<td>AIN time low skill mix</td>
<td>1.00</td>
<td>(0.99, 1.02)</td>
<td>0.761</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.06</td>
<td>(1.04, 1.07)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>5001 (3.83%)</td>
<td>78%</td>
<td>96.1</td>
<td>AIN time low skill mix</td>
<td>1.02</td>
<td>(1.02, 1.03)</td>
<td><0.001*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>(0.98, 1.00)</td>
<td>0.168</td>
</tr>
<tr>
<td>Sepsis</td>
<td>2207 (1.69%)</td>
<td>81%</td>
<td>98.3</td>
<td>AIN time low skill mix</td>
<td>1.01</td>
<td>(1.00, 1.02)</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.98</td>
<td>(0.96, 0.99)</td>
<td>0.006*</td>
</tr>
<tr>
<td>Falls with injury</td>
<td>976 (0.75%)</td>
<td>81%</td>
<td>99.3</td>
<td>AIN time low skill mix</td>
<td>1.01</td>
<td>(1.00, 1.03)</td>
<td>0.116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.05</td>
<td>(1.03, 1.07)</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

* indicates significant p-value; Odds ratio is for each 10% increase in time spent on AIN wards or low skill mix wards; n=130,540 for all outcomes except failure to rescue where n=9,499
Patient Outcomes: PEECH

• 22 items

• Four subscales:
 • Level of Security
 • Level of Knowing
 • Level of Personal Value
 • Level of Connection

• Higher scores indicate a greater level of emotional comfort
Patient Outcomes: Profile (PEECH)

- Random sample of 141 patients
 - 71 from AIN wards
 - 70 from non-AIN Wards
- Mean age 63.1 years (SD=15.8)
 - No significant difference between AIN & non-AIN wards
- 57.4% male
 - 47.9% on AIN wards
 - 61.7% on non-AIN wards

- Admitted for:
 - Nervous system disorders (14.2%, n=20)
 - Circulatory system disorders (13.5%, n=19)
 - Musculoskeletal system disorders (27%, n=38)
 - Neoplastic disorders (20.6%, n=29)
- 57.4% (n= 81) had comorbidities
- Most had been in the hospital for > 3 days (87.2%, n= 123)
Patient Outcomes: Emotional Care

<table>
<thead>
<tr>
<th>Mean (SD)</th>
<th>AIN wards</th>
<th>Non-AIN wards</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of security</td>
<td>2.57 (48%)</td>
<td>2.59 (48%)</td>
<td>0.915</td>
</tr>
<tr>
<td>Level of knowing</td>
<td>2.54 (59%)</td>
<td>2.48 (63%)</td>
<td>0.873</td>
</tr>
<tr>
<td>Level of personal value</td>
<td>2.5 (50%)</td>
<td>2.58 (52%)</td>
<td>0.105</td>
</tr>
<tr>
<td>Level of connection</td>
<td>1.82 (72%)</td>
<td>1.82 (87%)</td>
<td>0.781</td>
</tr>
<tr>
<td>Overall</td>
<td>2.36 (47%)</td>
<td>2.37 (52%)</td>
<td>0.677</td>
</tr>
</tbody>
</table>

![Bar chart showing comparison between AIN wards and Non-AIN wards for emotional care outcomes.]
Summary & Questions
Summary

• Patient outcomes: negative outcomes associate with AINs & skillmix
• Work activities: more direct care / less indirect care on AIN wards
• Perceived quality of care: higher on non-AIN wards
• Turnover: intent to leave higher on AIN wards
• Practice environments: staffing & leadership lower on AIN wards
• Violence experienced by nurses: higher on AIN wards
• Delayed tasks: higher on AIN wards
• Absenteeism: higher on AIN wards
• AINs reported performing tasks that appear out of scope
Questions

• Model of care & utilisation
 • Team versus patient allocation
 • What type of patients were allocated to AINs?
 • ‘Specialling’ (one-to-one)
 • Rounding – no evidence that AINs were used in this way

• Effective delegation & integration into the team
 • AINs may not have been routinely added to every shift every day
 • How would this impact effective delegation and model of care?

• Qualifications
 • Undergraduate BN students or Cert III qualification

• Scope of practice
 • Are findings linked to the use of Undergraduate BN students?

• If staffed to full complement, does adding more staff make a difference?

• Variation
 • Substantial variation within wards, what unit-level factors are important?
Current Controversy

Hornsby Ku-ring-gai Hospital nurses wage war on decision to introduce AiN’s into acute units

@ May 24, 2016 1:29pm
jake McCallum

NURSES are rallying against NSW Health to protect the safety of their most vulnerable patients, after “minimally qualified workers” were proposed to work in an intensive care unit.
Acknowledgements

• This project was funded by the Australian Research Council, WA Department of Health, and Sir Charles Gairdner Hospital
• Adjunct Associate Professor Catherine Stoddart is thanked for her support in the initial stages of this project
• Statistical support: Ms Helen Myers
• Research support: Ms Cathy Pienaar (ECU), Ms Sofia Dimitrelis (UTS), Ms Jan Forbes-Madden (UTS)
• Data collection: Ms Emily Allen, Ms Kayla Armistead, Ms Monique du Plessis, Mr David Jennnings, Ms Anne Lin, Ms Shelley McCrae, Ms Ellie Rice, & Mr Thomas Sharpe