Waist Circumference as a Tool for Pediatric Obesity Screening

Jeanette M Weiser, DNP, APRN-C, FNP-CS
A DNP project in conjunction with Maryville University, St. Louis, Missouri, USA

INTRODUCTION

The focus of this project was the early identification of childhood obesity.

The approach was upon exploring the utilization of waist circumference measurements as a tool (in addition to height, weight, and BMI) for the early detection of pediatric obesity.

The project did occur in a rural health clinic in the Midwest United States, based upon data obtained during the first quarter of 2014.

MATERIALS & METHODOLOGY

The overarching research design for this project was a quantitative correlational study.

The theoretical framework selected for this study was Pender’s Health Promotion Model.

• The process of waist circumference measurement was introduced to the clinical staff within the practice over the summer of 2013.

• Waist circumference was added as a clinical indicator to the Pender’s Health Promotion Model.

• The actual project entailed retrospective data analysis from a registry feature was utilized to collect variable data as a part of this project.

• A QA project was conducted in the last quarter of 2013 to ensure compliance among staff in the collection of the appropriate variables of age, gender, height, weight, BMI, and waist circumference.

• A registry feature was utilized to collect variable data as well as ICD-9 diagnostic codes of V85.xx and 278.xx (overweight/obese codes).

• The actual project entailed retrospective data analysis from the first quarter of 2014. No subject manipulation occurred as a part of this project.

• ICD-9 data analysis was conducted utilizing PDS Cortex & McKesson Practice Partners version 9 electronic health record system, to allow for structured data collection.

• McKesson Practice Partners version 9 electronic health record system, to allow for structured data collection.

• All data extraction and analysis was completed utilizing MS Excel version 2013 with the advanced statistical analysis add on.

OBJECTIVES

Ages ranged from 3-18. The total number of patients for which data was extracted totaled 255, including 142 males, and 113 females. Of these individuals, only a portion had both required variables of BMI and WC simultaneously. This included 53 total participants, of which 21 were male, and 32 female. The sixteen separate ages were separated into groupings of four, including ages 3-6, 7-10, 11-14, and 15-18.

Based upon these results, it may be concluded that BMI and/or waist circumferences obtained during a routine office visit led to the identification of an overweight/obesity diagnosis 14% of the time (29 ICD-9 diagnoses of 201 eligible patients).

In addition, patient’s age and/or gender did not have a significant relationship to BMI and waist circumference measurements, although it was notable through post hoc analyses that BMI and waist circumference means were higher in the older child groupings of 11-18, than in the younger child groupings of 3-10.

Additional studies with a larger survey population would be of benefit in order to further replicate and validate this data.

RESULTS

In addition, patient’s age and/or gender did not have a significant relationship to BMI and waist circumference measurements obtained during routine visits result in the identification of an overweight/obesity diagnosis.

Specific Aims

1. Identify how often the BMI and waist circumference measurements obtained during routine visits result in the identification of an overweight/obesity diagnosis.

2. Identify if the patient’s age and/or gender have any relationship to the BMI and waist circumference measurements.

RESULTS

For pediatric patients (ages 3-18) in a rural health clinic (P), how often did the BMI and waist circumference measurements obtained during routine visits (I) result in the identification of overweight/obesity (C), between January 1, 2014 and March 31, 2014 (T)?

Specific Aims

• Ages ranged from 3-18. The total number of patients for which data was extracted totaled 255, including 142 males, and 113 females. Of these individuals, only a portion had both required variables of BMI and WC simultaneously. This included 53 total participants, of which 21 were male, and 32 female. The sixteen separate ages were separated into groupings of four, including ages 3-6, 7-10, 11-14, and 15-18.

• Based upon these results, it may be concluded that BMI and/or waist circumferences obtained during a routine office visit led to the identification of an overweight/obesity diagnosis 14% of the time (29 ICD-9 diagnoses of 201 eligible patients).

• In addition, patient’s age and/or gender did not have a significant relationship to BMI and waist circumference measurements, although it was notable through post hoc analyses that BMI and waist circumference means were higher in the older child groupings of 11-18, than in the younger child groupings of 3-10.

DISCUSSION

The theoretical framework selected for this study was Pender’s Health Promotion Model.

• The overarching research design for this project was a quantitative correlational study.

• The actual project entailed retrospective data analysis from a registry feature was utilized to collect variable data as a part of this project.

• A QA project was conducted in the last quarter of 2013 to ensure compliance among staff in the collection of the appropriate variables of age, gender, height, weight, BMI, and waist circumference.

• A registry feature was utilized to collect variable data as well as ICD-9 diagnostic codes of V85.xx and 278.xx (overweight/obese codes).

• The actual project entailed retrospective data analysis from the first quarter of 2014. No subject manipulation occurred as a part of this project.

• ICD-9 data analysis was conducted utilizing PDS Cortex & McKesson Practice Partners version 9 electronic health record system, to allow for structured data collection.

• McKesson Practice Partners version 9 electronic health record system, to allow for structured data collection.

• All data extraction and analysis was completed utilizing MS Excel version 2013 with the advanced statistical analysis add on.

ACKNOWLEDGEMENTS

The DNP project committee at Maryville University consisted of:

- Dr. Gina Huff, chair
- Dr. Lathanya Nittrouer, 2nd chair
- Dr. Kathy Wright, 1st reader
- Dr. Donna Fife, 2nd reader
- Dr. Kimberly Perry, statistician
- Dr. F. Allen Moorhead Jr. MD, clinical consultant
- Dr. Wamaitha Sullivan, peer editor

Dr. LaDonna Smith, FNP-CS, peer editor

Dr. Jeanette M Weiser, DNP, APRN-C, FNP-CS

Dr. Kimberly Perry, statistician

Dr. F. Allen Moorhead Jr. MD, clinical consultant

Dr. Wamaitha Sullivan, peer editor

Dr. LaDonna Smith, FNP-CS, peer editor

No outside funding sources were utilized. No conflicts of interest identified.

CONTACT

Jeanette M Weiser

For additional information, or manuscript requests, contact via email at jweiser@gmail.com