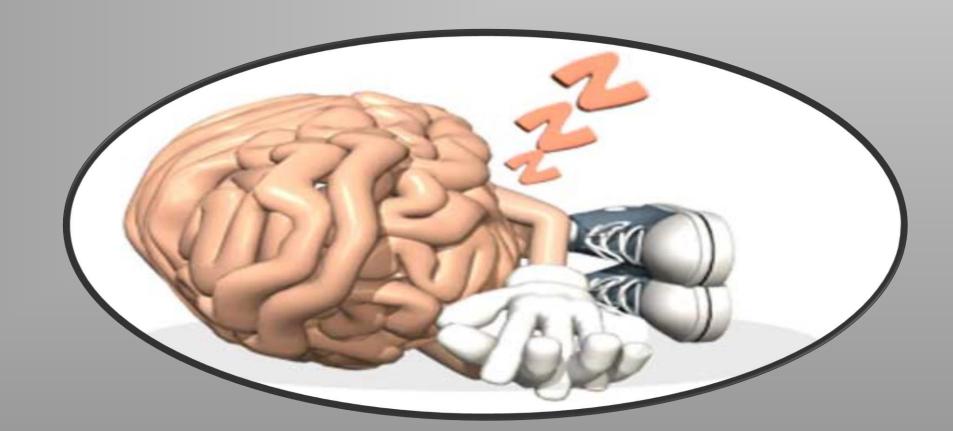


Background

- Tryptophan, an essential amino acid, serves as a precursor to serotonin synthesis with the rate of synthesis dependent on tryptophan concentrations in the brain (Fernstrom, 2013) and in the gut.
- Serotonin is involved in the regulation of neurobehavioral conditions. Furthermore, results are mixed on the effects of tryptophan and serotonin levels on cognitive function.
- Tryptophan is obtained through the diet rather than synthesized by the body (Soh & Walter, 2011). Therefore a controversial question exists as to whether dietary consumption of tryptophan has an impact on cognition in healthy individuals.


Purpose

The purpose of this study was to examine the neurobehavioral (cognitive) effects of consuming dietary tryptophan on cognition scores in healthy young adults.

Sample

A sample of 25 participants were recruited for this withinsubjects designed study.

Demographics (n = 25)							
Demographics	Mean	SD					
Age (years)	20.5	1.6					
Education (years)	13.9	0.8					
Health status	Mean	SD					
Body Mass Index	23.5	2.9					

The Neurobehavioral (Cognitive) Effects of Consuming Dietary Tryptophan Glenda Lindseth, PhD, RN, FAAN, FADA; Thomas Petros, PhD University of North Dakota, Grand Forks, ND

Within-Subject Differences for High a a Contr

Variable

Working Memory Reaction Time (with kilocalorie covariate) Low Tryptophan High Tryptophan Control

Spatial Orientation Test (Scores) Low Tryptophan High Tryptophan Control

Serotonin Low Tryptophan High Tryptophan Control

*p ≤ .05; **p ≤ .01

Acknowledgements

This study was funded by the U.S. Department of Defense Grant #DAMD17-03-1-0010 & #W81XWH-10-1-0454 and NIH Grant # 1C06 RR 022088-01

nd Low rol Diet	-	ryptophai	n Diets and
Mean	SD	F	p
59.5	59.3		
64.0	93.7	3.3	.05
77.0	120.3		
15.3	5.9		
13.3	7.0	.53	.59
15.3	5.5	••••	
1.6	.20		
1.9	.44	2.0	.25
2.0	.32		
	n = 25		

		S	51	t
•		7	λ	J
)(
			r	
				J 1

• The MRT spatial orientation scores were not significantly (p > .05) different when comparing the high and low tryptophan and control diets.

• Consumption of the high and low tryptophan and control diets did not result in significantly different (p > .05) serotonin lab values.

Study Design

Participants were randomly assigned to receive weighed food intakes of dietary tryptophan. Dietary treatments consisted of a high tryptophan diet, a low tryptophan diet and an unmanipulated (control) diet.

Two week washout periods were included between the study diets to eliminate carry-over effects between the dietary interventions.

Methods

Demographic Questionnaire **Biochemical Laboratory Tests** Weighed Food Intakes of Tryptophan

Vandenberg Spatial Orientation Test (α =.88)

ternberg Item Recognition (Working Memory) Test (α=.96)

Conclusions

Vorking memory (reaction time) was significantly ($p \le .05$) etter (with covariate kilocalories) when participants onsumed a low tryptophan diet in comparison to a high yptophan or control diets.

Implications

This study can contribute to understanding the effects of diet on cognition with implications for promoting healthy behaviors.

