INSTRUMENT DEVELOPMENT STUDY TO MEASURE PERCEIVED COMPETENCE & CONFIDENCE OF CLINICAL NURSE EDUCATORS

Van N.B. Nguyen*, Mohammadreza Mohebbi, Thai Thanh Truc,
Maxine Duke & Helen Forbes

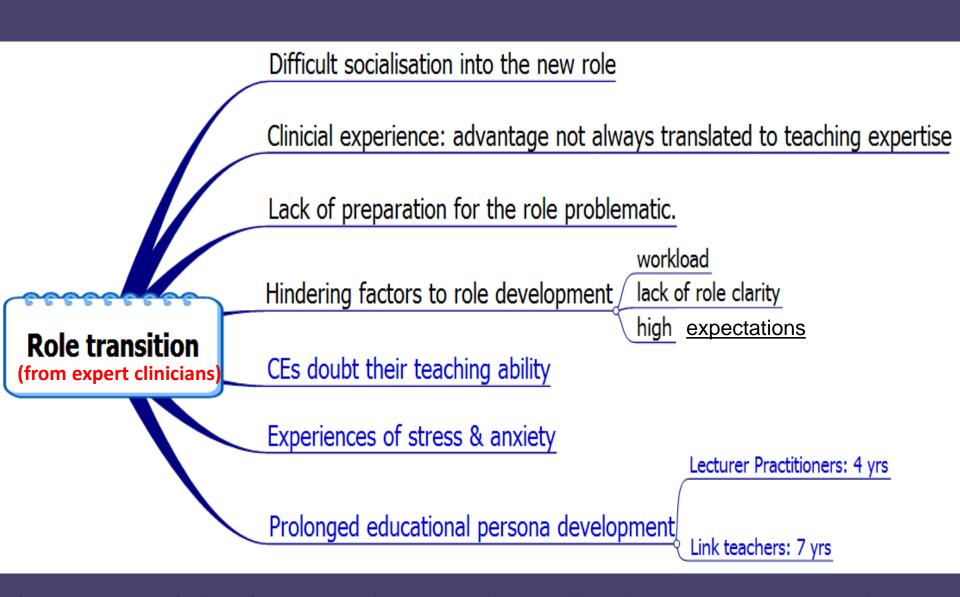
26th International Nursing Research Congress San Juan, Puerto Rico, 23-27/06/2015

(*nbn@deakin.edu.au or Vannguyenrg@gmail.com)

CONTENTS

- 1 Research background
 - Pilot study
 - Instrument development
 - 4 Analysis processes
- 5 Preliminary findings

Abbreviation:


- CE: Clinical educator
- PCC: Perceived competence & confidence

RESEARCH BACKGROUND

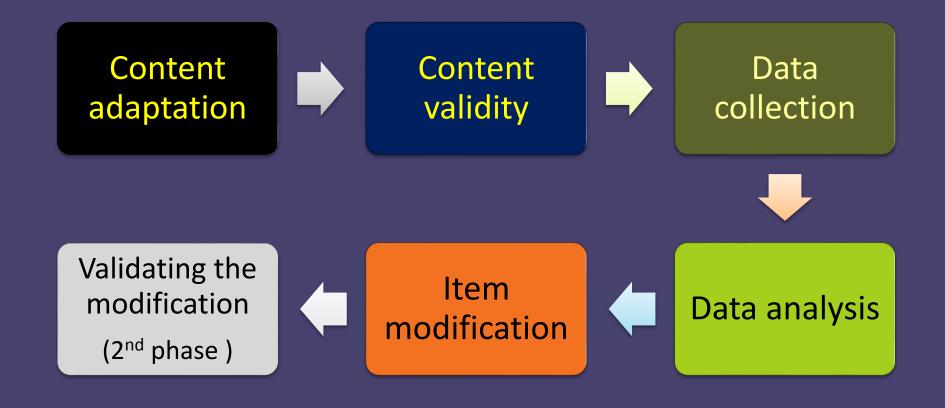
- Critical role of CNEs to quality of nursing education
- Clinical educators can affect student learning approach
- Clinical settings are complex and dynamic
- Students & clinical educators need to be supported for the role.
- Nurse educators in Western countries experience many difficulties with transition from clinician role to educator regardless of their background

TRANSITION FROM CLINICIAN TO CE ROLE

TRANSITION FROM CLINICIAN TO CE ROLE

- Little is know about this transition for clinical educators in Asian countries (Vietnam).
- Clinical educator recruitment methods in Asian countries:
 - Observed to be different in Western countries.
 - Effectiveness of the model unexplored
 - Clinical educator development in competence and confidence in the transition unknown.

Existing scale?

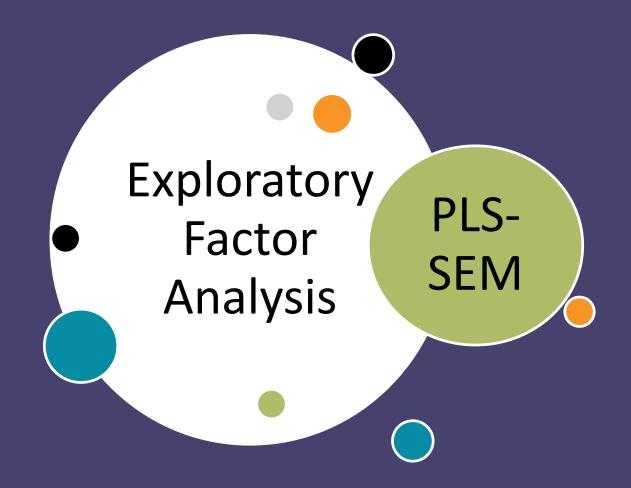

- -Nurse educator skill acquisition assessment (NESAA) (Ramsburg, 2012).
- —Content: 40 questions, based on 8 domains of competency areas (National League of Nursing, 2005).
- –NOT specific to clinical nursing education.

-High reliability, unknown validity.

THIS STUDY

To develop an instrument to measure clinical nurse educator perceived competence and confidence in clinical teaching.

INSTRUMENT DEVELOPMENT


VALIDITY & RELIABILITY

- Reliability: Internal consistency: Cronbach alpha's
- Content validity: panel of experts in nursing education
 & practice
- Convergent validity: Items' high loading (>0.5)
- Discriminant validity: No cross-loadings & low correlation between subscales (<0.7)

(Hair et al, 2010)

ANALYSIS

PLS-SEM: Variance-based Partial Least Square – Structural Equation Modelling

FACTOR ANALYSIS

- Used to identify dimensions & structure underlying the dataset through the analysis of correlations among variables or groups of variables.
- Exploratory factor analysis (EFA):
 - applied when the factorial theory is tentative
 - —to explore the theoretical structure of the dataset
 - possibly to reduce the number of items from a defined pool of items
- Confirmatory factor analysis (CFA):
 - -suitable when the conceptual ground is solid
 - -allow a hypothesised model to be tested and confirmed

- Prediction-oriented variance-based approach
- Focus on endogenous target constructs in the model
- Aim to maximising explained variance.
- Concern for use: Lack of global optimization criterion

RATIONALE FOR USE:

- Prediction & theory development.
- Exploratory/ Extension of an existing structural theory
- Not require data normality
- Small sample size
- Formative measurement of latent variables

(Hair et al, 2012, Hair et al, 2011)

ANALYSIS

DEMOGRAPHIC CHARACTERISTICS

		N	%
Gender	Male	26	25.0 <
	Female	78	75.0
Age Group	20-25	22	21.2
	26-30	49	47.1
	31-35	13	12.5
	36-40	7	6.7
	More than 40	13	12.5
Background	Nursing	90	86.5
	Medicine	12	11.5
	Other	2	2
	Collegial Degree of Nursing	16	15.4
	Bachelor of Nursing	49	47.1
Highest	Master of Nursing	15	14.4
qualification	Doctor of Nursing	1	1.0
	Master Degree in Health-related discipline	10	9.6
	Medical Doctor	13	12.5 ¹
N= 104			

EXPLORATORY FACTOR ANALYSIS

		Pattern			
			Factor		-
	1	2	3	4	5
A1_1		.304			.531
A2_2 A3_3				.807	
A3_3 A4_4	507	202	1/ 224		.646
A4_4 A5_5	.597	.282	X331	.245	216
B1_6	.582 .220	.222		.245	.316 .307
B1_0 B2_7	.381	.222		.234	.307
B3_8	.501	200		.402	1 /2
B4_9	.333	.287		.302	.322
B5_10	.829	.207		.502	
C1_11	.376				
C2_12	.386	38 Qı	ıestioı	NS .520	
C3_13	.459			.563	
C4_14	.792				
D1_15			.228		.824
D2_16					.804
D3_17	.305		.204		.493
D4_18	.393		.268		.227
D5_19	.838	2 6			
E1_20				.678	
E2_21		.240	.278	.369	
E3_22	X 21	325	.374	.521	
E4_23	.582		.468		
F1_24		.700			
F2_25		.789			
F3_26		.665			
F4_27				.502	
F5_28		.236	.227	.640	
G1_29		.587		.225	
G2_30		.258	.366	.245	\/
G3_31			.803		.2(3
G4_32	346		.770		
G5_33		.207	.566		
H1_34	232	.796			
H2_35		.505	.385		
H3_36	.327	50-	.625		
H4_37		.567	200		
H5_38	.385 n Method: Pr	.450	.308		254

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization

a. Rotation converged in 17 iterations.

		Patterr	n Matrix ^a		
	1	2	3	4	5
D5_19	1.002				
B5_10	.892				
C4_14	.796				
A5_5	.668				
A4_4	.511				
G3_31		.858			
G4_32		.810			
G5_33		.571			
H3_36		.516			
D2_16			.885		
D1_15			.811		
A3_3			.725		
A1_1			.555		
F5_28				.875	
E1_20				.749	
A2_2	21	Questi	one	.597	
F4_27	21	Questi	0115	.580	
E2_21				.534	
F2_25					.951
F1_24					.744
F3_26					.542

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization.

a. Rotation converged in 7 iterations.

Factor Correlation Matrix

Factor	1	2	3	4	5		
1	1.000	.571	.484	.638	.526		
2	.571	1.000	.550	.670	.615		
3	.484	.550	1.000	.522	.438		
4	.638	.670	.522	1.000	.597		
5	.526	.615	.438	.597	1.000		

VALIDATING FACTOR ANALYSIS

- Internal EFA Replication
- 70% of pilot sample random split

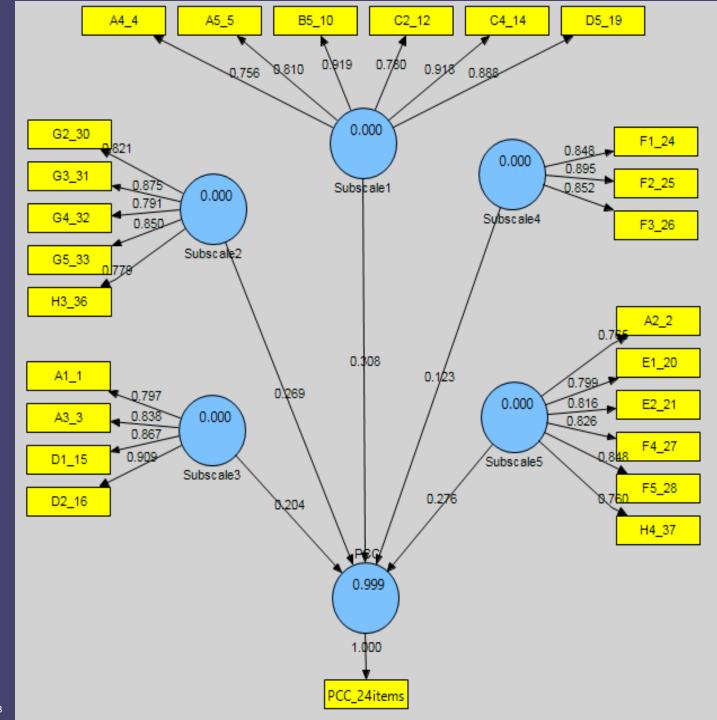
					,			٠					99												
n=69						n=74							n=76	8						n=104					
	Factor							Factor							Factor						Factor				
	1	2	3	4	5			1	2	3	4	5			1	2	3	4	5		1	2	3	4	5
B2_7	.708					A1_1		.456		.448			A5_	5	.590					D5_19	.989	ı			
E1_20	.767					B2_7		.616					B5_1	10	.829					B5_10	.891				
E2_21	.889					E1_20		.839					C4_*	14	.856					C4_14	.809				
F4_27	.584					E2_21		.773					D4_1	18	.473					A5_5	.642				
F5_28	.836					F3_26		.573				.418	D5_1	19	.880					A4_4	.505				
G1_29	.610					F4_27		.674					E3_2	22	.406					E1_20		.897			
H4_37	.410					F5_28		.710					E4_2	23	.549					E2_21		.744			
B5_10		.827				A5_5			.473				F1_2	24		.832				F5_28		.744			
C4_14		.798				B5_10			.868				F2_2			.861				E3_22		.729			
D4_18		.580				C4_14			.801				F3_2	26		.544				F4_27		.464			
D5_19		1.017				D5_19			.939				G1_	29		.502				D2_16			.904		
E4_23		.608				E4_23			.547				H1_3	34		.666				D1_15			.837		
A1_1			.527	,		A3_3				.649			H4_3	37		.571				A3_3			.742		
A3_3			.746			D1_15				.946			A1_	1			.590			A1_1			.567		
D1_15			.913	1		D2_16				.940			A3_:	3			.690			G4_32				.871	
D2_16			.958	3		D3_17				.547			D1_1	15			.959			G3_31				.859	
F1_24				.894	4	G3_31					.771	1	D2_1	16			.912			G5_33				.473	
F2_25				.802	2	G4_32	2				.923	3	D3_1	17			.461			H3_36				.413	
G3_31					.705	G5_33					.538	3	E1_2	20				.857		F2_25					.896
G4_32					.959	F1_24						.841	E2_2	21				.583		F1_24					.763
						F2_25						.772	F5_2	28				.629		F3_26					.596
													G3_	31					.927						
													G4_						.862						
													G5_						.491						

• > 70% of the patterns reiteratively replicated.

MODIFICATION & REFINEMENT OUTPUT

SUBSCALES:

- 1. Enhancing student learning
- 2. Relating theory and practice
- 3. Engaging in scholarship
- 4. Functioning as a leader
- 5. Participating in professional development.


PILOT DATA ANALYSIS - RELIABILITY

	Subscales	Cronbach's alpha
1	Enhancing student learning	.92
2	Relating theory and practice	.88
3	Engaging in scholarship	.88
4	Functioning as a leader	.88
5	Participating in professional	.83
	development	

Outer loadings:


0.756-0.918

→ Indicator
reliability

Bootstrap:

T-statistics > 3.29 P<0.001

Factor	Average Variance Extract	Composite Reliability
1	0.718	0.938
2	0.679	0.914
3	0.729	0.915
4	0.748	0.899
5	0.645	0.916

AVE>0.5 → Convergent validity

Composite reliability: 0.899 - 0.938 -> Internal reliability

ITEM MODIFICATION & REFINEMENT OUTPUT

Original survey (NESAA Tool)

Piloted version (CNESAA Tool)

Modified version (CNESAA Tool)

- Low confidence
- 2. Moderately low confidence
- 3. Moderately confidence
- 4. Moderately high confidence
- 5. High confidence

Not at all confident	\rightarrow	Extremely confident
0		

Rationale for modification:

- Data skewness
- Feedback from champions& participants
- Cultural awareness
- Consultation with experts.

DOMAIN		FR	REQUEN	MEAN	STANDARD DEVIATION		
	1	2	3	3 4			DEVIATION
DOMAIN A							
A1_1	0	1	22	43	38	4.13	.777
A2_2	0	9	32	44	19	3.7	.869
A3_3	0	4	23	40	37	4.06	.857
A4_4	1	8	36	43	16	3.63	.872
A5_5	5	13	40	36	10	3.32	.978
DOMAIN B							
B1_6	0	2	18	36	31	4.07	.767
B2_7	0	5	26	43	30	3.94	.857
D2 0		-	2.5	гэ	4.0	2.64	726

ITEM MODIFICATION & REFINEMENT OUTPUT

- Clarification & rewording made to enhance the clarity of content.
- NEXT STEP: Validation in an independent sample using CFA.

REFERENCES

- 1. Al Kadri, H. M. F., Al-Moamary, M. S., Elzubair, M., Magzoub, M. E., Almutairi, A., Roberts, C. and Van Der Vleuten, C. 2011. Exploring factors affecting undergraduate medical students' study strategies in the clinical years: a qualitative study. *Advances in Health Sciences Education*, 16, 553-567.
- 2. Anderson, J. K. 2009. "The work-role transition of expert clinician to novice academic educator". Journal of Nursing Education, 48, 203-208.
- 3. Boyd, P. 2010. "Academic induction for professional educators: supporting the workplace learning of newly appointed lecturers in teacher and nurse education". International Journal for Academic Development, 15, 155-165.
- 4. Cangelosi, P. R., Crocker, S. & Sorrell, J. M. 2009. "Expert to novice: clinicians learning new roles as clinical nurse educators". Nursing Education Perspectives, 30, 367-371.
- 5. Dempsey, L. M. 2007. "The experiences of Irish nurse lecturers role transition from clinician to educator". International Journal of Nursing Education Scholarship, 4, 1-12.
- 6. Hair, J., Sarstedt, M., Ringle, C. and Mena, J. 2012. An assessment of the use of partial least squares structural equation modeling in marketing research. *Journal of the Academy of Marketing Science*, 40, 414-433.
- 7. Hair, J. F., Black, W. C., Babin, B. J. and Anderson, R. E. 2010. *Multivariate data analysis a global perspective,* Upper Saddle River: Pearson.
- 8. Hair, J. F., Ringle, C., Sarstedt, M. 2011. PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
- 9. Kaviani, N. & Stillwell, Y. 2000. "An Evaluative Study of Clinical Preceptorship". Nurse Education Today, 20, 218-26.
- 10. Manning, L. & Neville, S. 2009. "Work-role transition: from staff nurse to clinical nurse educator". Nursing Praxis In New Zealand Inc, 25, 41-53.
- 11. National League for Nursing 2005. Core competencies of nurse educators with task statements.
- 12. Ramage, C. 2004. "Negotiating multiple roles: link teachers in clinical nursing practice". Journal Of Advanced Nursing, 45, 287-296
- 13. Ramsburg, L., & Childress, R. (2012). AN INITIAL INVESTIGATION of the Applicability of the Dreyfus Skill Acquisition Model to the Professional
 - Development of Nurse Educators. Nursing Education Perspectives, 33(5), 312-316.
- 14. Schriner, C. L. 2007. "The influence of culture on clinical nurses transitioning into the faculty role". Nursing education 145-9.
- 15. Siler, B. B. P. R. N. & Kleiner, C. 2001. "Novice faculty: Encountering expectations in Academia". Journal of Nursing E 403.

