Program Evaluation of Camp Kudzu: Impact of Camp Attendance on HgA1C Levels in Adolescents

MARY KATHERINE WHITE, DNP, RN, CPNP

KENNESAW STATE UNIVERSITY

WELLSTAR SCHOOL OF NURSING

Introduction

Type I Diabetes Mellitus (T1DM) accounts for 10% of all diabetes cases

(Currie et al., 2013, Toussi et.al, 2008)

■T1DM is widely prevalent in the world, U.S. & GA and incidence is ↑

12.4% of U.S. population & 13.6% of Georgia's population lives with T1DM

(Novo Nordisk, 2014)

 U.S. has 5th highest incidence rate of T1DM in world with a rate of 22/100K

(Soltez et.al, 2009)

- 480K children currently live with T1DM worldwide
 - 76K new diagnoses/yr, ^incidence 3%/yr (Soltez et al., 2009)
- ■# youth in U.S. diagnosed ↑ 23% from 2001-2009 (Hino, 2013)

T1DM is 3rd most common chronic illness in adolescents (Skocic et al., 2012).

Complex treatment regimens

 Diet, exercise, self blood glucose monitoring (SBGM), insulin administration (Skocic et al, 2012)

Lack of proper treatment --> multiple complications

(Currie et al., 2013)

- Cardiovascular, neuropathy ,renal failure, premature death (Skocic et al., 2012, Carson, 2000)
- Life expectancy is 20 yrs less for T1DM
- Costs \$14.9 billion in U.S. annually (JDRF, 2014)

Non-adherence complications are the leading cause of kidney failure, non-traumatic limb amputations and blindness, major cause of heart disease and stroke, and 7th leading cause of death in the U.S. (CDC, 2011)

■Adherence predicts control --> 26% \downarrow in complications and good outcomes are \uparrow 3x

(Markowitz et al., 2011, Taddeo et al., 2008)

■ Non-adherence ↑ in adolescents more than any other age (Borus & Laffel, 2010)

(Borus & Lattel, 2010)

- Pressures that influence acceptance and maintenance of T1DM (Carson, 2008)
- Peer acceptance
- ↓ SBGM
- Overprotective parents
- Denial
- Anxiety/Depression

Monitoring T1DM control?

	A1C Level	~Avg BG level
•HgA1C or A1C (%) \rightarrow	%	(mg/dL)
approximate average BG over 2-3 month (Delamater, 2006)	5	97
 Objective, reliable measure of long term control 	6	126
(Delamater, 2006)	7	154
Dx <19 yrs <7.5, adolescents <7.5 (ADA, 2014)	8	183
	9	212
Endocrinologists' views	10	240
Range should be 6-7, <7.5 runs 5.5 - >14	11	269
	12	298
	13	326
	14	355

Problem Summary

■ Incidence of T1DM is ↑ at very high rates in the U.S. (Soltez et al, 2009)

Incidence of T1DM in children in the U.S. is 22/100K (Soltez et al., 2009, Hino, 2013)

Georgia has \uparrow prevalence of T1DM than US (Novo Nordisk, 2014)

Adolescents are most non-compliant age group (Taddeo et al, 2008, Carson, 2000)

Diabetes Camps

Diabetes Camps are the ideal setting for continued diabetes education

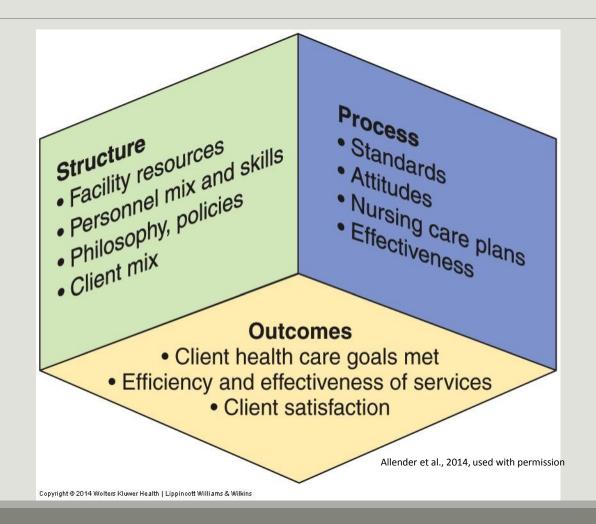
(Wang et al., 2008, Garcia-Perez et al., 2010, Vicklund et al., 2007)

■Camp is effective at ↑ knowledge of self care, but weaker at showing a ↓ in A1C

(Hino, 2013, Wang et al., 2008)

30,000 children attend diabetes camps in the U.S. (Hino, 2013)

www.campkudzu.org



Mission:

To educate, empower and inspire children living with diabetes

- There are some mechanisms to evaluate certain aspects of camp
- They are missing the part that all really want to know: Does camp attendance really impact campers' A1C?
- Is the education, empowerment and inspiration done at Camp Kudzu making a difference in the self-management of the campers?
- The BOD asked for this evaluation

Conceptual Framework: Systems Model

Conceptual Framework: Systems Model

Structure:

Camp sights, Office, Staff, Volunteers, Equipment

Process:

Clinicians' decisions, Campers' acceptance

Outcomes:

Golden awards, Satisfaction surveys, No A1C data

Literature Search

Search Process		
Databases: Ovid,	Search Findings	Level & Quality of
PubMed, Cinhal Search Terms:	10 articles	Evidence
Adolescent, Diabetes Mellitus Type-1, Camp, Hemoglobin glycosylated	RCT -0	Quasi – Experimental (Level IV) –
Limits: 2000- present,	Quasi-Experimental – 9	6A, 3B, 1C
English, attendance at camp, A1C outcome		Non- Experimental
	Non-Experimental -1	1B

Evidence Themes on Diabetes Camps

Formal Education - Lecture

(Garcia-Perez et al., (2010), Semiz et al., (2000), Santiprabhob et al., (2008), Karaguzel et al., (2005), Winsett et al., (2010))

Informal Education - Discussion groups

(Garcia- Perez et al., (2010), Viklund et al., (2007), Santiprabhob et al., (2008), Karaguzel et al., (2005))

Physical Activity (Huber et al., (2010), Ruznic et al., (2007))

SBGM Frequency (Haller et al., (2004), Santiprabhob et al., (2008))

Empowerment - Self-Esteem and Confidence

(Garcia-Perez et al., (2010), Santiprobhob et al., (2008), Wang et al., (2008), Kargruzel et al., (2005), Winsett et al (2010), Semiz et al., (2000))

Inspiration - Role Modeling

(Semiz et al., (2000), Karaguzel et al., (2005))

Literature supporting Camp Kudzu

■Educate - ↑ SBGM, ↑ Control, ↑ all types of education ↑short term control, evens with long term

(Garcia-Perez et al., (2010), Semiz et al., (2000), Santiprabhob et al., (2008), Karaguzel et al., (2005), Winsett et al., (2010), , Viklund et al., (2007), Huber et al., (2010), Ruznic et al., (2007), Haller et al., (2004)

Empower - not effective or ineffective

(Garcia-Perez et al., (2010), Santiprobhob et al., (2008), Wang et al., (2008), Kargruzel et al., (2005), Winsett et al., (2010), Semiz et al., (2000)

Inspire - Role modeling- effective – encouraged friendships and desires to return to camp (series tel. (2000) Kernevel et al. (2005)

(Semiz et al., (2000), Karaguzel et al., (2005)

Project Aims

Describe the characteristics of adolescents attending Camp Kudzu and those not attending

Determine the impact of attending Camp Kudzu on the HgA1C levels of adolescents

Determine association of adolescents' demographics with HgA1C

Methodology

Type of project:

A retrospective chart review using a Pre/Post format

Site:

Camp Kudzu, 2 pediatric endocrinology practices

Participants:

Adolescents 11-18 years old that attended Camp Kudzu in the summer of 2013 from two pediatric endocrinology practices and a matched sample on gender, age and practice that have never attended camp

Methodology

- Chart Review using a Pre/Post model
 - 12 month pre-camp <u>average</u> A1C
 - 2-4 month post camp single value A1C
 - 12 month post-camp <u>average</u> A1C
 - Non-campers used equivalent time periods
- GRU IRB reviewed and approved
- This study was not funded

Demographics

	Variables	Campers (n=221)
Age	11-12 yrs	62 (31.31%)
	13-14 yrs	70 (35.35%)
	15-16 yrs	45 (20.73%)
	17-18 yrs	21 (10.61%)
Gender Male		88 (44.22%)
	Female	111 (55.78%)
Insurance	Private	148 (74.37%)
	Medicaid	40 (20.10%)
	Peach Care	8 (4.02%)
	No Answer	3 (1.51%)

Demographics

Variables		Campers (n=221)	Non-campers (n=203)
Age	11-12 yrs	62 (31.31%)	62 (31.16%)
	13-14 yrs	70 (35.35%)	71 (35.68%)
	15-16 yrs	45 (20.73%)	45 (22.61%)
	17-18 yrs	21 (10.61%)	21 (10.55%)
Gender	Male	88 (44.22%)	91 (45.73%)
Female		111 (55.78%)	108 (54.27%)
Insurance	Private	148 (74.37%)	121 (59.61%)
	Medicaid	40 (20.10%)	65 (32.01%)
	Peach Care	8 (4.02%)	14 (6.9%)
	No Answer	3 (1.51%)	3 (1.48%)

Demographics

Variable		Campers (n=221)	Non-campers (n=203)
Insulin Delivery Pump		116 (52.49%)	69 (33.99%)
Shots		102 (46.15%)	129 (63.55%)
Date of Dx	<1 yr	25 (11.31%)	21 (10.34%)
yrs	1-3	61 (27.6%)	68 (33.5%)
yrs	4-6	50 (22.62%)	51 (25.12%)
	7-10 yrs	58 (36.24%)	36 (17.73%)
yrs	>10	23 (10.41%)	14 (6.9%)

Results: Pre-Camp A1C

Variable	Campers (n=221)	Non-Campers (n=203)	Mean Difference	p Value
Age 11-12 yrs	7.94	8.37	-0.43	0.066
13-14 yrs	8.26	8.49	-0.23	0.395
15-16 yrs	8.8	8.7	0.1	0.787
17-18 yrs	8.49	8.98	-0.49	0.291
Gender Male	8.34	8.36	-0.02	0.909
Female	8.25	8.71	-0.46	0.031

Results: Pre/Post Camp A1C Levels

Variable	Campers (n=221) Pre-Camp Mean	Campers (n=203) <u>Post-Camp</u> Mean	P-Value
A1C	8.29	8.34	0.462
*Paired t-test			

Variable	Campers (n=221) Mean	Non-Campers (n=203) Mean	P-Value
12 mo Pre-Camp Avg	8.29	8.55	0.084
2-4 mo <u>Post Camp</u>	8.30	8.27	0.887
12 mo <u>Post-Camp</u> Avg	8.34	8.59	0.112
*Two sample t-test			

Results: Campers' Age: *Pre/Post* Camp A1C

Age Range	Pre-Camp Avg Mean (SD)	<u>Post-Camp</u> Avg Mean (SD)	Mean Difference
11-12 yrs	7.94 (1.26)	8.09 (1.26)	0.15
13-14 yrs	8.26 (1.55)	8.44 (1.49)	0.18
15-16 yrs	8.8 (1.72)	8.56 (6.6)	-0.24
17-18 yrs	8.49 (1.22)	8.41 (0.92)	-0.08

Results: Campers'/Non-campers' Age: *Pre*/<u>**Post**</u> Camp A1C

Age Range	Campers (n=221) Pre-Camp Avg Mean (SD)	Non-Campers (n-203) Pre-Camp Avg Mean (SD)	P Value
11-12 yrs	7.94 (1.26)	8.37 (1.46)	0.066
13-14 yrs	8.26 (1.55)	8.49 (1.64)	0.395
15-16 yrs	8.8 (1.72)	8.7 (1.78)	0.787
17-18 yrs	8.49 (1.22)	8.98 (1.68)	0.291
Age Range	Campers (n=221) <u>Post-Camp</u> Avg Mean (SD)	Non-Campers (n=203) <u>Post-Camp</u> Avg Mean (SD)	P Value
11-12 yrs	8.09 (1.26)	8.45 (1.65)	0.151
13-14 yrs	8.44 (1.49)	8.47 (1.51)	0.917
15-16 yrs	8.56 (6.6)	8.65 (2.11)	0.819
17-18 yrs	8.41 (0.92)	9.27 (2.01)	0.087

Results: Campers' Gender: *Pre/*<u>**Post**</u> Camp A1C

Gender	Pre-Camp Avg Mean A1C (SD)	<u>Post-Camp</u> Avg Mean A1C (SD)	Mean Difference
Male	8.34 (1.52)	8.41 (1.41)	0.07
Female	8.25 (1.47)	8.29 (1.36)	0.04

Results: Campers'/Non-campers' Gender: *Pre*/<u>**Post**</u> Camp A1C

Gender	Campers (n=221) Pre-Camp Avg Mean(SD)	Non-Campers (n=203) Pre-Camp Avg Mean (SD)	P Value
Male	8.34 (1.52)	8.36 (1.45)	0.909
Female	8.25 (1.47)	8.71 (1.75)	0.031

Gender	Campers (n=221) <u>Post-Camp</u> Avg Mean (SD)	Non-Campers (n=203) <u>Post-Camp</u> Avg Mean (SD)	P Value
Male	8.41 (1.41)	8.54 (1.45)	0.582
Female	8.29 (1.36)	8.63 (1.8)	0.108

Results: Campers' Length of DX: *Pre/*<u>**Post**</u> A1C

Date of Dx	Pre-Camp Avg Mean A1C (SD)	<u>Post-Camp</u> Avg Mean A1C (SD)	Mean Difference
<1 yr	7.87 (1.78)	7.98 (1.64)	0.11
1-3 yrs	8.08 (1.47)	8.28 (1.28)	0.2
4-6 yrs	8.4 (1.56)	8.47 (1.61)	0.07
7-10 yrs	8.43 (1.27)	8.44 (1.23)	0.01
>10 yrs	8.72 (1.51)	8.4 (1.24)	-0.32

Results: Campers'/Non-campers' Length of Dx: Pre/Post A1C

Length of Dx	Campers (n=221) Pre-Camp Avg Mean (SD)	Non-Campers (n-203) Pre-Camp Avg Mean (SD)	P Value
<1 yr	7.87 (1.78)	8.84 (2.41)	0.141
1-3 yrs	8.08 (1.47)	8.02 (1.34)	0.811
4-6 yrs	8.4 (1.56)	8.7 (1.35)	0.32
7-10 yrs	8.43 (1.27)	8.84 (1.41)	0.16
>10 yrs	8.72 (1.51)	9.95 (1.89)	0.05
Length of Dx	Campers (n=221) <u>Post-Camp</u> Avg Mean (SD)	Non-Campers (n=203) <u>Post-Camp</u> Avg Mean (SD)	P Value
<1 yr	7.98 (1.64)	7.29 (1.37)	0.124
1-3 yrs	8.28 (1.28)	8.52 (1.83)	0.375
4-6 yrs	8.47 (1.61)	8.73 (1.48)	0.41
7-10 yrs	8.44 (1.23)	8.79 (1.45)	0.233
>10 yrs	8.4 (1.24)	10.06 (2.09)	0.014

Results: Campers' Insulin Delivery: *Pre/*<u>**Post**</u> A1C

Insulin Delivery	Pre-Camp Avg Mean A1C (SD)	<u>Post-Camp</u> Avg Mean A1C (SD)	Mean Difference
Pump	8 (1.1)	8.12 (1.05)	0.12
Shot	8.56 (1.75)	8.78 (1.74)	0.22

Results: Campers'/Non-campers' Insulin Delivery: *Pre*/<u>**Post**</u> A1C

Insulin Delivery	Campers (n=221) Pre-Camp Avg Mean (SD)	Non-Campers (n=203) Pre-Camp Avg Mean (SD)	P Value
Pump	8 (1.1)	8.07 (1.16)	0.713
Shot	8.56 (1.75)	8.78 (1.74)	0.359
Insulin Delivery	Campars (n=221) <u>Post-Camp</u> Avg Mean (SD)	Non-Campers (n=203) <u>Post-Camp</u> Avg Mean (SD)	P Value
Pump	8.12 (1.05)	8.27 (1.15)	0.368
Shot	8.78 (1.74)	8.81 (1.98)	0.249

Results: Campers'# Yrs of Camp Attendance: *Pre/*<u>**Post**</u> A1C

# Yrs at Camp	N	Pre-Camp Avg Mean (SD)	<u>Post-Camp</u> Avg Mean (SD)	Mean Difference
1 yr	47	8.5 (1.93)	8.45 (1.82)	-0.05
2-4 yrs	105	8.13 (1.43)	8.31 (1.32)	0.18
5-7 yrs	52	8.24 (0.91)	8.21 (1.02)	-0.03
8-10 yrs	14	8.93 (1.89)	8.59 (1.47)	-0.34
>10 yrs	1	8.3	8.7	0.4

Results: Summary

■>10 yrs length of dx for campers, post-camp A1C is 1.66 lower than non-campers with a net \downarrow 0.4

•8-10 yrs of camp attendance \downarrow A1C 0.3

Camp attendance has little affect on A1C

Discussion

Other studies show a small \$\sqrt{in}\$ in A1C at 3 mo post-camp, but returns by 12-mo post-camp

This study showed no change at 2-4-mo post-camp single value and little to no change with 12-mo post camp average consistent with other studies

■ Metformin ↓ A1C 0.6 (Hurst et al., 2012)

 Limitations – 75% of participants were 11-14 yrs of age range in the pubescent stage, general stage of life of adolescents

■Future studies need to be done → look at older adolescents as well as the effect of camp attendance, as adolescents, on young adults' A1C

Implications for practice

Camp attendance had little impact A1C levels

 Referrals of adolescents to diabetes camps are still appropriate

Benefits of attending camp include howledge of self management and finding emotional support through new friends and exposure to staff that function as role models (Hino, 2013, Wang et al., 2008)

- Allender, J. A., Rector, C. & Warner, K. D. (2014). Community & Public Health Nursing 8th Edition. Baltimore: Lippincott Williams & Wilkins.
- Anderson, B. J., Holmbeck, G., Iannotti, R. J., McKay, S.V.. Lochrie, A., Volkening, L. K., & Laffel, L. (2009). Dyadic measures of the parent-child relationship during the transition to adolescence and glycemic control in children with type 1 diabetes. *Family Systems Health*, 27(2), 141-152. doi: 10.1037/a0015759
- Anderson, S. (2013). Measuring and optimizing healthcare quality. *Quality Digest*. Advance online publication. Retrieved from <u>http://www.qualitydigest.com/inside/health-care-column/measuring-and-optimizing-healthcare-quality.html</u>
- Borus, J. S. & Laffel, L. (2010). Adherence challenges in the management of type 1 diabetes in adolescents: prevention and intervention. *Current Opinions in Pediatrics*, 22(4), 405-411.
- Camp Kudzu. (June 4, 2014). Camp Kudzu home page [Website]. Retrieved from http://www.campkudzu.org
- Carson, C. (2000). Managing adolescents with type-1 diabetes. *NursingTimes.net*, 96(45), 36.

- CDC. (2011). National Diabetes Fact Sheet. Retrieved from <u>http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf</u>
- Currie, C. J., Petyrot, ., Morgan, C. L., Poole, C. D., Jenkins-Jones, S., Rubin, R. R., ... Evans, M. (2013). The impact of treatment non-compliance on mortality in people with type 1 diabetes. *Journal of Diabetes and Its Complications, 27,* 219-223.
- Delamater, A. M. (2006). Clinical use of hemoglobin A1C to improve diabetes management. *Clinical Diabetes,* 24 (1), 6-8.
- Garcia-Perez, L., Perestelo-Perez, L., Serrano-Aguilar, P., & del Mar T rujillo-Martin. (2010).
 Effectiveness of a psychoeducative intervention in a summer camp for children with type 1 diabetes mellitus. *The Diabetes Educator*, *36*(2), 310-317.
- Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., & Schunemann, H. J. (2008). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *British Medical Journal, 336*, 924-926. Retrieved from <u>http://www.gradeworkinggroup.org/publications/GRADE-1_BMJ2008.pdf</u>
- Haller, M. J., Stalvey, M. S., & Silverstein, J. H. (2004). Predictors of control of diabetes: monitoring may be the key. *The Journal of Pediatrics*, 144(5), 660-661.

- Hino, S. (2013). Ongoing support: a critical component to strengthen peer support for adolescents in diabetes camps. (The American Academy of Family Physicians Foundation). Retrieved from http://peersforprogress.org/pfp idea exchange/ongoing-support-a-criticalcomponent-to-strengthen-peer-support-for-adolescents-in-diabetes-camps
- Hirst, J. A., Farmer, A. J., Ali, R., Roberts, N. W., & Stevens, R. J. (2012). Quantifying the effect of Metformin treatment and dose on glycemic control. *Diabetes Care*, 35(2), 446-454. doi: 10.2337/dc11-1465.
- •Huber, J., ... Borkenstein, M. H. (2010). The influence of physical activity on gherlin and IGF-1/IGFBP-3 levels in children and adolescents with type 1 diabetes mellitus. *Pediatric Diabetes*, *11*, 384-385.
- JDRF. (2014). Type 1 diabetes facts. Retrieved from <u>https://jdrf.org/about-jdrf/fact-sheets/type-1-diabetes-facts/</u>
- Karaguzel, G., Bircan, I., Erisir, S., & Bundak, R. (2005). Metabolic control and educational status in children with type 1 diabetes: effects of a summer camp and intensive insulin treatment. *Acta Diabetol, 42*, 156-161.

- Markowitz, J. T., Laffell, L. M. B., Volkening, L. K., Anderson, B. J., Nanselt, T. R., Weissberg-Benchell, J., & Wysockis, T. (2011). Validation of an abbreviated adherence measure for young people with type 1 diabetes. *Diabetic Medicine, 28,* 1113-1117. doi: 10:1111/j.1464-5491.2011.03321.x
- Mayo Clinic Staff. (2014). Tests and procedures, A1C test, results. Retireved from <u>http://www.mayoclinic.org/tests-procedures/a1c-test/basics/results/prc-20012585</u>
- Novo Nordisk. (2014). Changing diabetes barometer: measure, share, improve. Retrieved from http://www.changingdiabetesbarometer.com/diabetes-data/countries/usa.aspx?intmap=prev
- Ruzic, L., Sporis, G., & Matkovic, B. R. (2007). High volume-low intensity exercise at camp and glycemic control in diabetic children. *Journal of Paediatrics and Child Health, 44,* 122-128.
- Santiprabhob, J., ... Nitiyanant, W. (2008). Glycemic control and the psychosocial benefits gained by patients with type 1 diabetes mellitus attending the diabetes camp. *Patient Education and Counseling, 73,* 60-66.
- Semiz, S., Bilgin, O., Bundak R., & Bircan, I. (2000). Summer camps for diabetic children: an experience in Antalya, Turkey. *Acta Diabetol 37*, 197-200.
- Skocic, M., Marcinko, D., Razic, A., Stipcevic, M. & Rudan, V. (2012). Relationship between psychopathological factors and metabolic control in children and adolescents with insulindependent diabetes mellitus. Collegium Antropologicum, 36(2), 467-472.

Soltesz, G., Patterson, C. & Dahlquist, G. (2009). Diabetes in the young: a global perspective. Retrieved from

http://www.idf.org/sites/default/files/Diabetes_in_the_Young.pdf

Taddeo, D., Egedy, M., & Frappier, J-Y. (2008). Adherence to treatment in adolescents. *Paediatric Child Health*, *13*(1), 19-24.

Toussi, M., Choleau, C., Reach, G., Cahane, M., Bar-Hen, A., & Venot, A. (2008). A novel method for measuring patients' adherence to insulin dosing guidelines: introducing indicators of adherence. *BMC Medical Informatics and Decision Making*, 8(55), 1-9.

United States Census Burreau. (2014). State and county quickfacts, Georgia. Retrieved from <u>http://quickfacts.census.gov/qfd/states/13000.html</u>

Viklund, G. E., Rudberg, S., & Wikblad, K. F. (2007). Teenageres with diabetes: selfmanagement education and training on a big schooner. *International Journal of Nursing Practice*, *13*, 385-392.

Wang, Y. C. A., Stewart, S., Tuli, E., & White, P. (2008). Improved glycemic control in adolescents with type 1 diabetes mellitus who attend diabetes camp. *Pediatric Diabetes, 9*, 29-34.

Winsett, R. P., Stender, S. R., Gower, G. & Burghen, G. A. (2010). *Continuing Nursing Education*, *36*(6), 293-297.