

Harnessing the Power of the Technological Pedagogical Revolution by Using Podcasts to Enhance Critical Thinking

Cynthia A. Blum, PhD, RN, CNE
Christine E. Lynn College of Nursing - Florida Atlantic University

Background

- Critical thinking (CT) is essential for a nursing student's success (Myrick, Caplan, Smitten, & Rusk, 2011) and is vital nursing knowledge, regardless of setting or patient population (Kaddoura, 2010).
- CT can improve patient outcomes through the use of evidence-based practice; therefore, teaching CT in pre-licensure nursing education programs is necessary and enables nursing students to develop these skills through experience and practice (Chan, 2013).
- Research on the use of instructional technology, such as podcasting, as an adjunctive learning resource has shown that it is an effective teaching method and cost-effective.
 - Instructional technology is generally not utilized in nursing education.

FLORIDA ATLANTIC UNIVERSITY Purpose & Significance

- 1. The technological pedagogical revolution holds great promise to a generation of learners who have matured alongside its emergence.
- 2. The NLN (2011) has set a research priority in nursing education to lead reform with the use of technology to disseminate knowledge.
- 3. The purpose of this pilot interventional study was to determine if use of a podcast for ongoing nursing education would increase critical thinking (CT).
- 4. The findings of this research provide guidance to educators throughout the nation regarding an innovative technological method to prepare and support nursing students.

Methods: Selection Criteria

- Convenience Sample
 - Participants were final semester students in their preceptorship in an urban, pre-licensure NLN-accredited state college nursing program
 - Control Group: Spring 2014 (n = 17)
 - Intervention Group: Fall 2014 (n = 21)

Methods: Instruments

Health Sciences Reasoning Test (HRST)

(Cronbach's alpha = .78 and .82)

- •CT skills measurement
- •5 Core Reasoning Skills
 - Induction
 - Deduction
 - Analysis
 - Inference
 - Evaluation

Methods: Procedure

Control Group

- Spring 2014 students:
 - Pre-test administered at the beginning of the semester
 - Post-test administered at the end of the semester

Intervention Group

- Fall 2014 students:
 - Pre-test administered at the beginning of the semester
 - Free podcast access instructions provided to students
 - Post-test administered at the end of the semester

Methods: Statistics and Analysis

- Statistical analysis was conducted with IBM SPSS Statistical Software v22
- Between-groups repeated measures ANOVA was used to determine differences in CT (HSRT scores)
- Multiple linear regression (MLR) with full and restricted models were utilized to identify statistically significant covariates

Results: Participant Demographics

38 students participated in this study to its completion

- Control (C) = 17, Intervention (I) = 21
- Sex: 35 females (C = 17, I = 18); 3 males (C = 0, I = 3).
- Age range: 18 to 63+ years of age
 - Majority 26 to 42 years of age (n = 26)
- 19 received previous CT instruction
- Native Language:
 - 29 English (C = 14, I = 15)
 - 4 Spanish (C = 1, I = 3)
 - 1 Creole (C = 1, I = 0)
 - 2 Portuguese (C = 1, I = 1)
 - 1 Tagalog (C = 0, I = 1)
 - 1 Croatian (C = 0, I = 1)

Statistical Analyses: Hypothesis 1

Students who receive an educational podcast will have a greater increase for critical thinking ability than students who receive standardized education.

- •Repeated Measures ANOVA
- •Overall HRST Scores
 - o $F(1, 36) = 1.91, p = .088, \eta^2 = .050$
 - o Approaching statistical significance
- •Individual core reasoning skills no statistical significance
 - η² (Effect size) (low proportions of variance)

Table 1
Repeated Measures ANOVA for HRST Post-Test Scores and Core Reasoning Skills for Decision-Making Post-Scores and Educational Podcast Viewing: Intervention group (n=21)

Variables	F	p value	η^2
HRST Pre-Test	1.10	.151	.030
HRST Pre-Test and Group	1.91	.088	.050
Induction Pre-Scores	2.30	.138	.060
Induction Pre-Scores and Group	.853	.362	.023
Deduction Pre-Scores	1.82	.186	.048
Deduction Pre-Scores and Group	1.31	.261	.035
Analysis Pre-Scores	.062	.804	.002
Analysis Pre-Scores and Group	.636	.430	.015
Inference Pre-Scores	.508	.481	.014
Inference Pre-Score and Group	2.52	.121	.065
Evaluation Pre-Scores	2.41	.130	.063
Evaluation Pre-Scores and Group	.079	<mark>.781</mark>	.002

Approaching statistical significance

Statistical Analyses: Hypothesis 1

Means and Standard Deviations of HRST Scores Between Pre-test and Posttest Among Groups: Control group (n = 17) and Intervention group (n=21)

Variables	Pre-Test		Post-Test		
	Mean	SD	Mean	SD	
Control Group	19.65	4.05	19.47	4.46	
Intervention Group	18.76	4.50	20.05	4.53	
Total	19.16	4.27	19.79	4.45	

Statistical Analyses: Hypothesis 2

Table 2
Full and Restricted MLR Models for Correlating the Relationships Between Number of Times
Podcasts Viewed and HRST Post-Test Scores and Number of Times Podcasts Viewed and Core
Reasoning Skills for Decision-Making: Intervention group (n=21)

Keason	ing Skills for Decision-Making: Inter	vention grot	ıp (n−∠1)			
MLR	Models & Outcomes	B	SE	β	t	p
MLR	Models for HRST Post-Scores					
1	(Constant)	7.14	3.246		2.2	0.04
	Pre-Test Scores	0.688	0.168	0.684	4.09	0.001
2	(Constant)	8.12	3.33		2.441	0.025
	Pre-Test Scores	0.697	3.327	0.693	4.17	0.001
	Total Times Viewed	-1.051	0.906	-0.193	-1.16	0.261
		Δ	F(1, 18) = 1	1.35, $\Delta R^2 =$.037, p = .2	61
MLR	Models for Induction Post-Scores					
1	(Constant)	3	0.98		3.05	0.007
	Induction Pre-Scores	0.539	0.139	0.666	3.9	0.001
2	(Constant)	2.97	1.051		2.83	0.011
	Induction Pre-Scores	0.539	0.143	0.665	3.77	0.001
	Total Times Viewed	0.028	0.338	0.015	0.082	0.935
		ΔF	7(1, 18) = .0	$\Delta R^2 = \langle$	< .001, p = .9	<mark>935</mark>
мтр	Model for Deduction Post-Scores				•	
1VILK . 1	(Constant)	2.41	1.19		2.02	0.058
1		0.674	1.17	0.583	3.13	
2	Deduction Pre-Scores (Constant)	2.88	0.215 1.24	0.383	2.33	0.006 0.032
	Deduction Pre-Scores	0.719	0.216	0.622	3.34	0.032 0.004
	Total Times Viewed	-0.641	0.216	-0.232	-1.24	0.004
	Total Tilles viewed				0.052, p = .25	
			U(1, 10) - 1	1.34, Δ <i>I</i> (–	0.052, p2	<mark>30</mark>
MLR I	Models for Analysis Post-Scores					
1	(Constant)	1.1	1.27		0.863	0.397
_	Analysis Pre-Scores	0.651	0.337	0.367	1.93	0.065
2	(Constant)	-0.114	1.282		-0.089	0.93
	Analysis Pre-Scores	0.741	0.313	0.418	2.37	0.027
	Total Times Viewed	1	0.437	0.405	2.3	0.031
		Δ	F(1, 23) = 5	$5.27, \Delta R^2 =$.161, p = .0	31
MLR	Models for Inference Post-Scores					
1	(Constant)	3.3	0.598		5.51	< .001
	Inference Pre-Scores	0.185	0.166	0.248	1.12	0.278
2	(Constant)	3.45	0.684		5.34	< .001
	Inference Pre-Scores	0.19	0.17	0.254	1.12	0.278
	Total Times Viewed	-0.151	0.311	-0.11	-0.485	0.633
					.012, p = .6	
					<i>,</i> 1	

An increased dose (number of times viewed) will have a positive relationship on gains in critical thinking ability.

- Multiple linear regression
 - Full and Restricted Models
 - Overall no statistical significance
 - Core reasoning skill Analysis subscale: statistical significance (p = .031)

MLR	Models for Evaluation Post-Scores					
1	(Constant)	2.19	0.714		3.07	0.006
	Evaluation Pre-Scores	0.453	0.15	0.57	3.02	0.007
2	(Constant)	2.24	0.747		2.99	0.008
	Evaluation Pre-Scores	0.464	0.158	0.584	2.94	0.009
	Total Times Viewed	-0.09	0.292	-0.061	-0.307	0.762
		Δ	F(1, 18) = .	$094, \Delta R^2 =$.004, p = .7	<mark>62</mark>

Note: Model 1 is the Restricted Model, Model 2 is the Full Model, ΔF is the F change, ΔR^2 is the R² change between Full and Restricted Models.

Statistical Analyses: Hypothesis 2

Means, Standard Deviations, and Multiple Regression Model for Correlating the Relationship Between Number of Times Podcast Viewed, HRST Scores, and Core Reasoning Skills for Decision-Making: Intervention Group (n=21)

Variables	Pre-	Test	Post-	·Test
	Mean	SD	Mean	SD
Times Viewed = 0	19.27	4.941	21.67	5.203
Times Viewed = 1	19.00	4.967	19.00	4.359
Times Viewed = 2	18.88	4.224	19.75	4.449
Total	19.08	4.551	20.05	4.533

Statistical Analyses: Hypothesis 3

Table 3

MLR Models for Correlating the Relationships Between Specific Demographic Factors and HRST Post-Scores and Specific Demographic Factors and Core Reasoning Skills for Decision-Making: Intervention Group (n=21)

Making	. Intervention Group (n-21)					
MLR I	Models & Outcomes	В	SE	β	t	p
MLR I	Models for HRST Post-Test Scores					
1	(Constant)	7.14	3.246		2.20	.040
	Pre-Test Scores	.688	.168	.684	4.09	.001
2	(Constant)	8.22	3.38		2.43	.026
	Pre-Test Scores	.678	.177	.674	3.840	.001
	Age	005	.459	002	012	.991
	Native Language	1.14	1.77	.116	.646	.527
		Δ	F(2, 17) =	$218, \Delta R^2 =$	= .013, p = .80	<mark>06</mark>
MLR I	Models for Induction Post-Scores					
1	(Constant)	2.59	.949		2.73	.010
	Induction Pre-Scores	.585	.131	.597	4.46	< .001
2	(Constant)	1.94	1.18		1.65	.107
	Induction Pre-Scores	.604	.136	.616	4.43	< .001
	Age	.116	.119	.134	.980	.334
	Native Language	.040	.107	.051	.368	.715
		Δ	F(2, 34) = .	$520, \Delta R^2 =$	= .019, p = .59	<mark>99</mark>
MLR I	Model for Deduction Post-Scores					
1	(Constant)	1.91	.770		2.48	.018
	Deduction Pre-Scores	.711	.139	.647	5.10	< .001
2	(Constant)	1.76	1.05		1.68	.101
	Deduction Pre-Scores	.725	.144	.660	5.02	< .001
	Age	.056	.153	.048	.366	.717
	Native Language	070	.136	067	511	.613
		Δ	F(2, 34) =	$209, \Delta R^2 =$	= .007, p = .81	12
MLR I	Models for Analysis Post-Scores					
1	(Constant)	1.75	.795		2.20	.034
	Analysis Pre-Scores	.513	.212	.353	2.41	.020
2	(Constant)	1.10	1.00		1.10	.280
	Analysis Pre-Scores	.509	.216	.351	2.36	.023
	Age	.179	.140	.188	1.28	.208
	Native Language	.018	.134	.020	.134	.894
		Δ	F(2, 39) = .	823, $\Delta R^2 =$	= .035, p = .44	<mark>17</mark>
					_	

There will be a relationship between demographic factors and changes in critical thinking ability for students who viewed an educational podcast.

- Multiple linear regression
 - Full and Restricted Models
 - Overall no statistical significance
 - Core reasoning skill Inference subscale: approaching statistical significance (p = .072)

MLR	Models for Inference Post-S	Scores				
1	(Constant)	3.03	.618		4.91	< .001
	Inference Pre-Scores	.236	.158	.241	1.49	.145
2	(Constant)	2.19	.779		3.74	.001
	Inference Pre-Scores	.286	.153	.292	1.87	.070
	Age	.092	.112	.128	.823	.416
	Native Language	218	.099	340	-2.19	.036
		Δ	F(2, 34) = 2	$\Delta R^2 =$.135, p = .0	<mark>172</mark>
MID						
WILK.	Models for Evaluation Post-	-Scores				
1	Models for Evaluation Post- (Constant)	-Scores 2.28	.661		3.44	.001
1			.661 .139	.458	3.44	.001
1 1 2	(Constant)	2.28		.458		
1 1 2	(Constant) Evaluation Pre-Scores	2.28 .428	.139	.458	3.09	.004
1 2	(Constant) Evaluation Pre-Scores (Constant)	2.28 .428 1.89	.139 .825		3.09 2.29	.004
1 2	(Constant) Evaluation Pre-Scores (Constant) Evaluation Pre-Scores	2.28 .428 1.89 .421	.139 .825 .143	.450	3.09 2.29 2.94	.004 .028 .006

Note: Model 1 is the Restricted Model, Model 2 is the Full Model, ΔF is the F change, ΔR^2 is the R² change between Full and Restricted Models.

Conclusion

- The results of this pilot study suggest that CT podcast viewing did not improve nursing students' CT abilities
 - However, the results of the repeated-measures ANOVA were approaching statistical significance and a Likert assessment showed that students valued podcast education for learning CT skills
- Demographic factors (age and native language) and sample size were limited resulting in a decreased observed power
- Future investigation is recommended with a larger sample size with diversification of demographic factors

References

- Chan, Z. C. Y. (2013). A systematic review of critical thinking in nursing education. Nurse Education Today, 33, 236-240. doi:10.1016/j.nedt.2013.01.007
- Kaddoura, M. (2010). New graduate nurses' perceptions of the effects of clinical simulation on their critical thinking, learning, and confidence. *Journal of Continuing Education in Nursing*, 41(11), 506-516. doi:10.3928/00220124-20100701-02
- Myrick, F., Caplan, W., Smitten, J., & Rusk, K. (2011). Preceptor mentor education: A world of possibilities through e-learning technology. *Nurse Education Today, 31*, 263-267. doi:10.1016/j.nedt.2010.10.026
- National League for Nursing. (2011). *Research priorities in nursing education*, 2012-2015. Retrieved from www.nln.org/researchgrants/researchpriorities.pdf