The Family Partners for Health Study: A Randomized Cluster Control Trial for Child and Parent Weight Management

Diane Berry, PhD, ANP-BC, FAANP
Associate Professor
Beerstecher-Blackwell Distinguished Term Scholar
The University of North Carolina
at Chapel Hill
School of Nursing
dberry@email.unc.edu

NCT01378806
Research Team

Diane Berry, PhD, ANP-BC, FAANP (Principal Investigator)
Todd A. Schwartz, DrPH (Co-I and Statistician)
Robert G. McMurray, PhD (Co-I and Exercise)
Alice Ammerman, DrPH, RD (Co-I and Nutrition)
Lizette Sanchez Lugo, PhD, RD (Co-I and Nutrition)
Gail D’Eramo Melkus, EdD, C-NP, FAAN (Consultant)
Margaret Grey, DrPH, FAAN (Consultant)
Kathleen Knafl, PhD, FAAN (Consultant)
Natnaree Aimyong, MSc (Biostatistics and Data Manager)
Madeline Neal, BS (Project Manager)
Emily Gail Hall, BS (Education Interventionist)
Dean J. Amatuli, BS (Exercise Interventionist)
Funding Source

National Institutes of Health
National Institute of Nursing Research
1R0100254-05
2007-2012
Background

- Overweight and Obesity
 - Adults
 - Children
- Co-Morbidities and Mortality
 - Prediabetes
 - Diabetes
 - Cardiovascular Disease
- Economic Burden
 - Direct Costs
 - Indirect Costs
Source of the Problem

- Genetic Predisposition
- Environmental Factors
 - Nutrition
 - Exercise
 - Sedentary Activities
Purpose

Examine the effects of a two-phase intervention on the following outcomes in 2nd, 3rd, and 4th grade children who are overweight or obese and their overweight or obese parents

- **Weight Status**
 (BMI Percentile and BMI)
 - Stabilization of weight trajectory and BMI percentile in children
 - Weight loss and decreased BMI in parents

- **Adiposity Status**
 (Waist Circumference, Triceps and Subscapular Skinfolds)
 - Stabilization of adiposity trajectory in children
 - Adiposity loss in parents
Purpose

• Health Behaviors (Nutrition and Exercise)
 - Child Health Behavior Questionnaire (DHHS 2004; NCDHHS, 2004)
 - Adult Health Behavior Questionnaire (DHHS, 2004; NCDHHS, 2004)
 - Health Promoting Lifestyle Profile II in parents (Walker, Sechrist, & Pender, 1987)
 - Accelerometry for 4 days in children and parents (Trost et al., 2005)
Purpose

• **Self-Efficacy**
 - Child and Adolescent Trial for Cardiovascular Health (CATCH) Questionnaire (Parcel et al., 1995)
 - Eating Self-Efficacy Questionnaire in parents (Glynn & Ruderman, 1986)
 - Exercise Self-Efficacy Questionnaire in parents (Bandura, 1997)
Intervention Conceptualization

Social Cognitive Theory

Building Knowledge-Building Self-Efficacy

Parenting Skills-Role Modeling

Problem-----Intervention-----Outcomes
Methods

• Two group repeated measures experimental design

• Test a 12-week intensive intervention (Phase I)

• Nine months of monthly follow-up (Phase II)

• Six months on their own

• Total of 18 months in the study
Methods

• Data Collection

 - Time 1 (Baseline)

 - Time 2 (Completion of Phase I)

 - Time 3 (Completion of Phase II)

 - Time 4 (Completion of Follow-up)
Settings

• Community Partners
 - 2 School Districts
 - 8 Rural Elementary Schools
 - 12 Additional Catchment Schools
 - Enrollment
 - Delivery of the Intervention
 Classrooms
 Gymnasiums
Sample

• Inclusion criteria for children
 - Ability to speak, write, and read in English
 - A BMI $\geq 85^{th}$ percentile for age and gender in the 2nd, 3rd, or 4th grade
 - A parent or guardian with a BMI ≥ 25 kg/m2
 - Lives with the parent
 - Their assent and their parent or guardian’s consent to their participation
Sample

- Inclusion criteria for parents
 - Ability to speak, write, and read in English
 - A BMI ≥ 25 kg/m2
 - A child with a BMI $\geq 85^{th}$ percentile for age and gender in the 2nd, 3rd or 4th grade
 - Lives with the child
 - Their consent and their child’s assent to participation in the study
Exclusion Criteria

- Children/Parents were excluded if either had a history of
 - Heart murmur
 - Congenital heart disease
 - Family history of sudden death
 - History of psychological problems
 - Participation in another clinical trial
 - Asian race
<table>
<thead>
<tr>
<th>Sessions</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nutrition Education</td>
<td>Understanding calories, proteins, carbohydrates, and fats</td>
</tr>
<tr>
<td>2. Nutrition Education</td>
<td>How portion control can make a difference</td>
</tr>
<tr>
<td>3. Nutrition Education</td>
<td>How to make healthy substitutes with food</td>
</tr>
<tr>
<td>4. Nutrition Education</td>
<td>Choosing healthy food when eating out</td>
</tr>
<tr>
<td>5. Exercise Education</td>
<td>The importance of exercise</td>
</tr>
<tr>
<td>6. Coping Skills</td>
<td>Increasing exercise</td>
</tr>
<tr>
<td>7. Coping Skills</td>
<td>Improving nutrition and exercise behaviors</td>
</tr>
<tr>
<td>8. Coping Skills</td>
<td>Motivating each other in a positive manner</td>
</tr>
<tr>
<td>9. Coping Skills</td>
<td>Understanding barriers to healthy choices</td>
</tr>
<tr>
<td>10. Coping Skills</td>
<td>Getting back on track after relapse</td>
</tr>
<tr>
<td>11. Coping Skills</td>
<td>Working through conflict</td>
</tr>
<tr>
<td>12. Final Class</td>
<td>Putting it all together</td>
</tr>
</tbody>
</table>
Phase II Intervention

Sessions

1. Nutrition and Exercise Problem Solving
2. Nutrition and Exercise Problem Solving
3. Nutrition and Exercise Problem Solving
4. Nutrition and Exercise Problem Solving
5. Nutrition and Exercise Problem Solving
6. Nutrition and Exercise Problem Solving
7. Nutrition and Exercise Problem Solving
8. Nutrition and Exercise Problem Solving
9. Nutrition and Exercise Problem Solving
Exercise Intervention

- Basketball
- Soccer
- Walking
- Kick Boxing
- Stretching
- Light Weights
- Stretch Bands
Data Analysis

- General Linear Mixed Models
- The P-value for experimental versus control comparison was Hochberg-corrected
- Fixed effects included indicators for intervention, post-baseline time and pairs of simultaneous intervention and control groups as well as baseline value for the corresponding measure, which adjusted imbalances at baseline and the intervention-by-time interaction
Results
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>36.9 (±8.1) years</td>
</tr>
<tr>
<td>Gender</td>
<td>93% Female</td>
</tr>
<tr>
<td>Married</td>
<td>45%</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9% Middle School</td>
</tr>
<tr>
<td></td>
<td>34% High School</td>
</tr>
<tr>
<td></td>
<td>57% College Degree</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63% African American</td>
</tr>
<tr>
<td></td>
<td>31% Non-Hispanic White</td>
</tr>
<tr>
<td></td>
<td>6% Other</td>
</tr>
<tr>
<td>Income</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33% <$20,000/year</td>
</tr>
<tr>
<td></td>
<td>38% $20,000-$39,999/year</td>
</tr>
<tr>
<td></td>
<td>17% ≥ $40,000</td>
</tr>
<tr>
<td></td>
<td>12% Do not wish to respond</td>
</tr>
<tr>
<td>Biological Parent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88% Yes</td>
</tr>
<tr>
<td></td>
<td>12% No</td>
</tr>
</tbody>
</table>
Children’s Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>9.1 (±0.95) years</td>
</tr>
<tr>
<td>Gender</td>
<td>56% Female</td>
</tr>
<tr>
<td>Education</td>
<td>19% Second Grade</td>
</tr>
<tr>
<td></td>
<td>42% Third Grade</td>
</tr>
<tr>
<td></td>
<td>39% Fourth Grade</td>
</tr>
<tr>
<td>Race</td>
<td>64% African American</td>
</tr>
<tr>
<td></td>
<td>27% Non-Hispanic White</td>
</tr>
<tr>
<td></td>
<td>9% Other</td>
</tr>
<tr>
<td>Birth Order</td>
<td>43% First Born</td>
</tr>
<tr>
<td></td>
<td>34% Second Born</td>
</tr>
<tr>
<td></td>
<td>15% Third Born</td>
</tr>
<tr>
<td></td>
<td>6% Fourth Born</td>
</tr>
<tr>
<td></td>
<td>2% Fifth Born</td>
</tr>
</tbody>
</table>
Child Body Mass Index Percentile

![Graph showing Child Body Mass Index Percentile across different time points.](image)

- **Post Phase I**
 - 3 months
 - P = 0.288

- **Post Phase II**
 - 12 months
 - P = 0.287

- **Completion**
 - 18 months
 - P = 0.470

Red line represents the **Experimental** group.
Green line represents the **Control** group.
Children’s Waist Circumference (cm)

- Post Phase I
 - 3 months: P = 0.236
 - 12 months: P = 0.003
- Post Phase II
 - Completion: P = 0.060

Experimental

Control
Children’s Triceps Skinfolds (mm)

<table>
<thead>
<tr>
<th></th>
<th>Post Phase I 3 months</th>
<th>Post Phase II 12 months</th>
<th>Completion 18 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value</td>
<td>P = 0.104</td>
<td>P = 0.104</td>
<td>P = 0.001</td>
</tr>
</tbody>
</table>

Graph showing:
- Red line: Experimental
- Green line: Control

Comparison between Experimental and Control groups at different time points:
- Post Phase I: Experimental 24 mm, Control 25 mm (P = 0.104)
- Post Phase II: Experimental 24 mm, Control 25 mm (P = 0.104)
- Completion: Experimental 22 mm, Control 26 mm (P = 0.001)
Children’s Subscapular Skinfolds

Post Phase I
3 months
P = 0.002

Post Phase II
12 months
P = 0.018

Completion
18 months
P < 0.001

Red: Experimental
Green: Control
Parent’s Body Mass Index (kg/m²)

- Post Phase I: 3 months - P = 0.177
- Post Phase II: 12 months - P = 0.004
- Completion: 18 months - P = 0.001

Graph shows the comparison between Experimental and Control groups over time.
Parent’s Waist Circumference (cm)

Post Phase I
- 3 months: Experimental (P = 0.033), Control
- Post Phase II: Experimental (P < 0.001), Control
- Completion: Experimental (P = 0.005), Control

Experimental: Red line
Control: Green line
Parent’s Triceps Skinfolds (mm)

- 3 months: P = 0.101
- 12 months: P = 0.009
- 18 months: P < 0.001
Parent Subscapular Skinfolds (mm)

<table>
<thead>
<tr>
<th></th>
<th>Post Phase I 3 months</th>
<th>Post Phase II 12 months</th>
<th>Completion 18 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>P = 0.068</td>
<td>P = 0.013</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Children’s Dietary Knowledge

- Post Phase I: 3 months, P = 0.417
- Post Phase II: 12 months, P = 0.755
- Completion: 18 months, P = 0.018
Drinking Less Than One Glass of Soda per Day for Children

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Experimental</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 months Post Phase I</td>
<td>P = 0.103</td>
<td></td>
</tr>
<tr>
<td>12 months Post Phase II</td>
<td>P = 0.059</td>
<td></td>
</tr>
<tr>
<td>18 months Completion</td>
<td>P = 0.052</td>
<td></td>
</tr>
</tbody>
</table>

P-values indicate the significance of the difference between the experimental and control groups at each time period.
Parent’s Nutrition Knowledge

- Post Phase I
 - 3 months: P < 0.001
 - 12 months: P = 0.002
 - 18 months: P = 0.003

- Post Phase II

- Completion

Graph: Experimental vs Control
Parent’s Exercise Knowledge

- Experimental
- Control

Post Phase I
- 3 months: P < 0.001
- 12 months: P < 0.001
- 18 months: P < 0.001
Parent’s Health Responsibility

Post Phase I
3 months P = 0.003

Post Phase II
12 months P = 0.055

Completion
18 months P = 0.005
Parent’s Drinking Water or Unsweetened Drinks when Thirsty

- Post Phase I
 - 3 months: P = 0.020
 - Post Phase II
 - 12 months: P = 0.190
 - Completion
 - 18 months: P = 0.029
Parent’s Eating Unsweetened Breakfast Cereal

![Graph showing the percentage of parents eating unsweetened breakfast cereal at different phases and time points.]

- **Post Phase I (3 months):**
 - Experimental: 70%
 - Control: 50%
 - P = 0.014

- **Post Phase II (12 months):**
 - Experimental: 65%
 - Control: 45%
 - P = 0.046

- **Completion (18 months):**
 - Experimental: 60%
 - Control: 40%
 - P = 0.009
Self-Efficacy

- Experimental Children’s Eating Self-Efficacy and Exercise Self-Efficacy was not significantly improved compared to the control group.

- Experimental Parent’s Eating Self-Efficacy in the Socially Acceptable Circumstances subscale was significantly ($p = 0.013$) improved compared to the control group.

- Experimental Parent’s Eating Self Efficacy in the Negative Affect subscale and Exercise Self-Efficacy was not significantly increased compared to the control group.
Parent’s Exit Interviews

• “I have learned so much”
• “Our teacher was always helpful answering our questions about food or exercise.”
• “I enjoyed taking a class with my son...we both felt very committed to eating healthier and being more active.”
• “I feel I have the tools to make good decisions when we go out to eat.”
Children’s Exit Interviews

• “My mom and me are eating better”
• “We help each other.”
• “I loved playing basketball…kids against the moms and dads.”
• “I liked the sandwiches and fruit we got when we came to class.”
• “I liked my teacher….she helped me understand.”
Conclusion

- Experimental children’s BMI did not significantly decrease, but it did move from the obese range to the overweight range
- Experimental children’s adiposity trajectory significantly slowed and in some cases decreased
- Experimental children’s nutrition knowledge significantly increased and they drank less than 1 glass of soda per day
- Experimental children’s eating and exercise self-efficacy did not significantly improve
Conclusion

- Experimental parent’s BMI and adiposity significantly decreased
- Experimental parent’s Nutrition and Exercise Knowledge and Health Responsibility significantly increased
- Experimental parent’s significantly drank more water and unsweetened beverages when thirsty
- Experimental parent’s significantly ate more unsweetened breakfast cereal
- Experimental parent’s significantly improved eating self-efficacy
- Experimental parent’s did not significantly improve exercise self-efficacy
Limitations

• Does not reflect a representative sample of all African American, non-Hispanic white and bilingual Hispanic children and parents
• Data were self-reported except for anthropometric measurements
• Some of the measures were unbalanced between groups at baseline, presumably owing to the nature of the cluster randomization and were accounted for in the analysis
• Our study was funded to evaluate self-efficacy measures and behaviors as outcomes; however, we also recognize that others may evaluate them as potential mediators
Thank You!

Questions?