The Effectiveness of Exercise Program for aerobic Fitness in Adults with Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis

Mei-Ling Wu, MSN, RN

Doctoral Candidate
School of Nursing, National Yang-Ming University,
Taiwan

E-mail: mlwu@gw.cgust.edu.tw

Mei-Ling Wu

Objectives:

- Learners will understand the effectiveness of exercise program for aerobic fitness in adults with SLE.
- Learners will understand steps of conducting systemic review.
- •This study did not receive any funding from any public, for-profit, or non-for-profit organization.
- •The authors declare that there is no conflict of interest in conducting this study.

Affiliation:

➤ Department of Nursing, Chang Gung University of Science and Technology, Taiwan

Outline

- Introduction
- Research question
- Purpose of the study
- Methodology
- Results
- Discussion
- Conclusion and suggestions
- References

Introduction (1/2)

- □ Systemic Lupus Erythematosus (SLE) is a chronic immune system disorder that affects various organ systems.
- ☐ Hyperactive B cells, resulting from T-cell and antigen stimulation, increase the production of these anti-bodies against antigens.
- ☐ Autoantibodies and immune complexes formation and deposition lead to multiple organs damage.
- □ SLE patients may suffer from a variety of distress symptoms (i.e., fatigue, pain, depression, and sleep disturbance)

Introduction (2/2)

- □ SLE patients perform sedentary life style and have lower aerobic fitness, exercise capacity, muscle strength and pulmonary function than healthy people.
- □ High correlation between physical inactive and fatigue was reported.
- □ Gualano et al. (2010) proposed a vicious cycle that lack of physical exercise lead to physical inactivity and variety of symptoms aggravation. Accumulative symptoms (i.e. fatigue and muscle weakness) may drive patients to live in a physical inactive life style.
- □ Physical exercise could be a treatment that break the vicious cycle.

Research Question

□ Can exercise increase SLE patients' physical fitness and decrease SLE patients' fatigue?

□ PICO

P	I	C	O
Adult SLE patients	Exercise program	Usual care	1.Physical fitness2.fatigue

Purpose of the study

• To examine the effectiveness of exercise program on physical fitness and fatigue in adult SLE patients.

■Systematic review and meta-analysis

- Preferred Reporting Items for Systematic Reviews and Meta-Analysis(PRISRMA) recommended guidelines
- Search strategy
- ✓ Databases: Cochrane Library, PubMed, PsycINFO (ovid), MEDLINE, CINAHL Plus with Full Text (EBSCO)
- ✓ In order to reduce publication bias, we also searched the System for Information on Grey Literature in Europe (SIGLE) database.

- Keywords and terms used
- ✓ Participant: lupus or systemic lupus erythematosus
- ✓ Interventions: exercise, physical exercise, physical activity
- ✓ Types of studies: experimental study, randomized control trial, or quasi-experimental study
- Outcome measures: no key words used to avoid missing any potentially relevant studies during the search process

- > Inclusion criteria
- ✓ participants were adult participants aged over 18 years;
- ✓ participants were diagnosed with SLE;
- ✓ intervention was a exercise program;
- comparisons were usual care or no treatment;
- outcome measures were cardiovascular fitness or psychological distress symptoms;
- types of studies were primary research reports of randomized control trial, or quasi-experimental studies.

- > Exclusion criteria
- ✓ animal studies;
- ✓ not published in English

□ Assessment of methodological quality

Jadad scale

(Jadad et al., 1996; Olivo et al., 2008)

- \checkmark randomization (0-2)
- \checkmark double blinding (0-2)
- \checkmark dropouts (0-1)
 - -the score ≥ 3 consider as a high quality trial

(Jadad et al., 1996)

□Data synthesis

- ✓ Cochrane Collaboration's Review Manager Software (RevMan 5.2)
- ✓ We used the degree of inconsistency (I^2) to examine the heterogeneity between studies.
- ✓ If $I^2 > 50\%$ (p < 0.1) indicate notable heterogeneity, which need random effects model

(Borenstein, Hedges, Higgins, & Rothstein, 2009).

- 9 experimental studies are included in systemic review
- 4 studies are included in meta-analysis
- Characteristics of the included studies
 - Country: Brazil, USA, UK, Norway
 - Study design: 6 RCTs, 2 one group pretest- posttest designs,
 1 quasi-experimental design
 - □ Sample size: 6-93; 337 individuals in total
 - □ Mean age of sample: 30-50

- Characteristics of intervention
 - Frequency
 - > 2 times/wk- 1 study
 - > 3 times/wk- 10 studies
 - Intensity
 - > Fairly light to moderate- 1 study
 - Moderate- 2 studies
 - Moderate to vigorous- 3 studies
 - Not mentioning- 3 studies

- □ Mode
- Walking- 4 studies
- > Stationary bicycling- 1 study
- Aerobic exercise- 4 studies
- Duration
- > <30 min 1 study
- > 30-60 min 7 studies
- > > 60 min 1 study

- ☐ Study period
 - > 8 weeks 2 studies
 - > 10 weeks- 1 study
 - > 12 weeks- 5 studies
 - > 16 weeks- 1 study
- ☐ Supervised exercise or home-based exercise
 - > Supervised exercise program- 4 studies
 - > Home-based exercise- 4 studies
 - Mixed- 1 study

Meta-analysis

□Physical fitness-VO_{2 max (ml/kg/min)}

	Experimental			Control			Mean Difference			Mean C			Difference		
Study or Subgroup	Mean [1]	SD [1]	Total	Mean [1]	SD [1]	Total	Weight	IV, Fixed, 95% CI [1]	Year		IV, Fixed,	95% (21[1]		
Robb-Nicholson 1989	3.8	3.34	14	1.14	2.15	8	51.4%	2.66 [0.36, 4.96]	1989		L		-		
Carvalho 2005	1.68	4.43	41	0.19	4.3	19	48.6%	1.49 [-0.87, 3.85]	2005		-		-		
Total (95% CI)			55			27	100.0%	2.09 [0.44, 3.74]				•	•		
Heterogeneity: Chi² = 0.4 Test for overall effect: Z		ALC: NO SERVICE	²= 0%					L]	-10	-5	0 expe	5 erimenta	10	

• Physical fitness-exercise tolerance (min)

04-4		rimental			ntrol	T-4-1	Walaki	Mean Difference	V		[ifference		
Study or Subgroup	Mean [1]	SU [1]	lotal	Mean [1]	SU [1]	Total	vveignt	IV, Fixed, 95% CI [1]	Year		IV, Fixed,	95% CI J1	Ц	
Robb-Nicholson 1989	1.07	1.07	16	-0.5	1.33	10	39.5%	1.57 [0.59, 2.55]	1989			-		
Tench 2003	1.8	3.44	33	-0.3	4.24	32	10.7%	2.10 [0.22, 3.98]	2003			_		
Carvalho 2005	1.47	1.64	41	-0.2	1.58	19	49.8%	1.67 [0.80, 2.54]	2005			•		
Total (95% CI)			90	;		61	100.0%	1.68 [1.06, 2.29]				♦		
Heterogeneity: Chi ² = 0.24 Test for overall effect: Z =)				<u> </u>	ı	-10	-5	0 experim	5 Sontal	10

• Fatigue- Fatigue Severity Scale (FSS) (0-7)

	Experimental			Control			Mean Difference			Mean Difference				
Study or Subgroup	Mean [1]	SD [1]	Total	Mean [1]	SD [1]	Total	Weight	IV, Fixed, 95% CI [1]	Year		IV, F	ixed, 95	% CI [1]	
Ramsey-Goldman 2000	-0.78	0.15	5	-0.47	0.4	5	65.6%	-0.31 [-0.68, 0.06]	2000					
Tench 2003	-0.6	1.46	33	-0.1	1.44	32	18.5%	-0.50 [-1.21, 0.21]	2003			*		
Carvalho 2005	-0.89	1.4	41	0.01	1.4	19	15.9%	-0.90 [-1.66, -0.14]	2005			*		
Total (95% CI)			79			56	100.0%	-0.44 [-0.74, -0.14]				٠		
Heterogeneity: Chi² = 1.89 Test for overall effect: Z = 2		33 1 1970 0 1	= 0%						_]	-10	-5 experim	0 ental co	5 ontrol	10

Discussion

☐ Effect on physical fitness

Exercise is effective in improving VO_{2 max} and walking endurance in adults SLE patients.

□ Effect on fatigue
Exercise is effective in decreasing fatigue.
Statistic significance does not imply clinical importance.

■ Exercise is medicine

Exercise is a treatment that could interrupt physical inactivity caused vicious cycle.

Limitations

Publication bias

Methodology quality

Small sample size

Small number of eligible studies

• Different physical variables/ unit

Conclusion and Suggestions

- Regular exercise with moderate intensity perform at least 8 weeks can improve adult SLE patients physical fitness and decrease fatigue severity.
- Exercise recommendation for adult SLE patients Regular exerciser:
- ✓ 150 min of moderate intensity aerobic activity/wk
- ✓ 75 min of vigorous intensity aerobic activity/wk
- + muscles-strengthening activities on 2 or more days/wk (major muscle group-legs, hips, back, abdomen, chest, shoulder, arms)

Suggestions

- Exercise recommendation for adult SLE patients
 Sedentary lifestyle:
 - ✓ Begin with 20min a day, 3 days a week, moderate intensity, gradual progression to 150 min a week.
 - ✓ Light to moderate exercise for deconditioned individuals is acceptable.

Caution:

✓ Patients have severe joint pain and osteoprosis should avoid doing high impact exercise.

Suggestions

• Patient centered exercise prescription is recommended.

• Exercise education or exercise counseling should be a part of clinical care.

• Health care providers should encourage SLE patients do exercise regularly.

References

- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). *Introduction to meta-analysis*. UK: John Wiley & Sons.
- Carvalho, M. R. P. d., Sato, E. I., Tebexreni, A. S., Heidecher, R. T. C., Schenkman, S., & Neto, T. L. B. (2005). Effects of supervised cardiovascular training program on exercise tolerance, aerobic capacity, and quality of life in patients with systemic lupus erythematosus. *Arthritis Care & Research*, 53(6), 838-844.
- Clarke-Jenssen, A., Fredriksen, P. M., Lilleby, V., & Mengshoel, A. M. (2005). Effects of supervised aerobic exercise in patients with systemic lupus erythematosus: a pilot study. *Arthritis Care & Research*, *53*(2), 308-312.
- Daltroy, L. H., Robb-Nicholson, C., Iversen, M. D., Wright, E. A., & Liang, M. H. (1995). Effectiveness of minimally supervised home aerobic training in patients with systemic rheumatic disease. *Br J Rheumatol*, *34*(11), 1064-1069.
- dos Reis-Neto, E. T., da Silva, A. E., Monteiro, C. M. d. C., de Camargo, L. M., & Sato, E. I. (2013). Supervised physical exercise improves endothelial function in patients with systemic lupus erythematosus. *Rheumatology (Oxford, England)*, *52(12)*, 2187-2195.
- Gualano, B., Sá Pinto, A. L., Perondi, B., Leite Prado, D. M., Omori, C., Almeida, R. T., . . . Silva, C. A. A. (2010). Evidence for prescribing exercise as treatment in pediatric rheumatic diseases. *Autoimmunity Reviews*, 9(8), 569-573.
- Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J. M., Gavaghan, D. J., & McQuay, H. J. (1996). Assessing the quality of reports of randomized clinical trials: Is blinding necessary? *Controlled Clinical Trials*, 17(1), 1-12.
- Miossi, R., Benatti, F. B., Lúciade de Sá Pinto, A., Lima, F. R., Borba, E. F., Prado, D. M. L., . . . Roschel, H. (2012). Using exercise training to counterbalance chronotropic incompetence and delayed heart rate recovery in systemic lupus erythematosus: a randomized trial. *Arthritis Care & Research*, 64(8), 1159-1166.
- Olivo, S. A., Macedo, L. G., Gadotti, I. C., Fuentes, J., Stanton, T., & Magee, D. J. (2008). Scales to Assess the Quality of Randomized Controlled Trials: A Systematic Review. *Physical Therapy*, 88(2), 156-175.
- Ramsey-Goldman, R., Schilling, E. M., Dunlop, D., Langman, C., Greenland, P., Thomas, R. J., & Chang, R. W. (2000). A pilot study on the effects of exercise in patients with systemic lupus erythematosus. *Arthritis Care & Research*, 13(5), 262-269.
- Robb-Nicholson, L. C., Daltroy, L., Eaton, H., Gall, V., Wright, E., Hartley, L. H., . . . Liang, M. H. (1989). Effects of aerobic conditioning in lupus fatigue: a pilot study. *British Journal of Rheumatology*, 28(6), 500-505.
- Tench, C. M., McCarthy, J., McCurdie, I., White, P. D., & D'Cruz, D. P. (2003). Fatigue in systemic lupus erythematosus: a randomized controlled trial of exercise. *Rheumatology*, 42(9), 1050-1054.
- Yuen, H. K., Holthaus, K., Kamen, D. L., Sword, D. O., & Breland, H. L. (2011). Using Wii Fit to reduce fatigue among African American women with systemic lupus erythematosus: a pilot study. *Lupus*, 20(12), 1293-1299.