Pathways to Obesity: Implications of a Shifting Obesity Paradigm for Nursing Research

Mary Madeline Rogge, PhD, RN, FNP, BC
Sigma Theta Tau International
24th International Nursing Research Congress
Prague, Czech Republic • July 2013
Obesity is a global health problem.

- More than 500,000,000 adults have BMI > 30 Kg/m² (WHO, 2013).
- More than 40,000,000 children < 5 years old are overweight or obese (WHO, 2013).
Problem

* Calories in - calories out paradigm of weight regulation
Obesity classification systems are based on:

- Degree of adiposity
 - BMI classification
 - Percent body fat.

- Adipose distribution
 - Visceral, abdominal, or android
 - Peripheral, subcutaneous, or gynoid
Purpose

To identify and organize a new theoretical model of factors associated with the development and progression of obesity based on the pathophysiological bases for adipogenesis.
Theory synthesis (Walker & Avant, 2010, 1983) was utilized to organize research findings of adipogenic factors into a taxonomy of obesity pathophysiology.
Methodology

* Literature search > 863 articles

• Primary search terms
 ▪ Obesity etiology
 ▪ Obesity pathophysiology
 ▪ Adipogenesis

• Secondary search terms
 ▪ Leptin
 ▪ Mitochondria + obesity
 ▪ PPAR-γ + obesity
 ▪ Sleep and obesity
Methodology

* Heirarchy of research evidence:

- Human subjects
- Animal studies
- Cellular studies
- Random control studies
- Association studies – longitudinal
- Comparative studies
- Case studies
Results

* Initial taxonomy categories

- Genetics
- Hypothalamic dysfunction
- Adipose cell dysfunction
- Mitochondrial dysfunction
- Other unclassified
Results: Pathways to Obesity

* Genetic vs epigenetic effect

* Physiological process
 • Neuroendocrine signaling
 • Adipose cell dysfunction
 • Mitochondrial alterations
 • Gastrointestinal microbiota
Pathways to Obesity

Neuroendocrine Signaling

- 7 genes deleted or unexpressed, Chromosome 15q11-q13 (Prader-Willi syndrome)
- Resistance to leptin
- Leptin receptor homozygous & heterozygous mutations
- Leptin receptor polymorphisms
- MCR3 & MCR4 polymorphisms
- BDNF gene & its TrkB receptor variants
- Bardet–Biedl syndrome (BBS) gene mutations

Genetic

- MCR4 autoantibodies
- Medications (Atypical antipsychotic drugs, antihistamines; cortisol)
- MCR4 autoantibodies
- Stress
- Sleep deprivation

Epigenetic
Pathways to Obesity

Adipose Tissue

- Failure to liberate fatty acids (β-adrenergic receptor polymorphisms)
- Leptin homozygous & heterozygous mutations
- ? Lipase

- PPAR-γ activation (adenovirus-36, medications [TZDs], fatty acids)

- Brown fat deficiency
 - ? Vitamin D deficiency

Genetic

Epigenetic
Pathways to Obesity

Skeletal Muscle Mitochondria

Genetic
- mtDNA mutations
- Uncoupling proteins 2 & 3 polymorphisms
- Failure to metabolize fatty acids
- Excess free fatty acids
- Failure to metabolize glucose at aconitase in TCA cycle
- Pro-inflammatory cytokines, including TNF-α and IL-6
- Dioxin
- Dichloracetonitrile (H₂O₂ disinfectant)

Epigenetic
- Decreased carnitine palmitoyltransferase 1 (CPT1)
- Impaired mitochondrial biogenesis
Pathways to Obesity

Gastrointestinal Microbiota

- ↑Firmicutes ↓Bacteriodetes
 - Caesarean birth
- H. pylori eradication
- Lipopolysaccharide activation of innate immune system
Pathways to Obesity

Neuroendocrine
- Resistance to leptin
- Leptin receptor polymorphisms
- MCR3 & MCR4 polymorphisms
- MCR4 autoantibodies
- Leptin receptor deficiency
- BDNF gene & its TrkB receptor variants
- Hyperinsulinemia
- Medications (Antipsychotic drugs, antihistamines; cortisol)

Gastrointestinal Microbiota
- ↑Firmicutes ↓ Bacteriodetes,
- H. pylori eradication
- Lipopolysaccharide activation of innate immune system

Skeletal Muscle Mitochondria
- Failure to metabolize fatty acids
- Failure to metabolize glucose at aconitase in TCA cycle
- Increased AMPK production
- Medications (Statins, B-blockers)
- Impaired mitochondrial biogenesis

Adipose Tissue
- Failure to liberate fatty acids (β-adrenergic receptor polymorphisms)
- Lipase
- PPAR-γ activation (adenovirus-36, medications [TZDs], fatty acids)
- Brown fat deficiency
Conclusions

* Benefits of the taxonomy

- Requires health care providers to more thoroughly assess patients for “noncaloric” factors contributing to weight gain.
 - History of exposures – medications, toxins
 - Life events – stress, sleep
 - Diagnostic testing
Conclusions

* Benefits of the taxonomy

 • Changes how students and patients are taught about obesity.
 ▪ Obesity is more complex than calories in and calories out.
 ▪ Patients can try and fail to control their weight without being hedonistic
 ▪ The role of genetic counseling in diagnosing and treating obesity.
Conclusions

* Benefits of the taxonomy

- Expands research options
 - Environmental epidemiology
 - Environmental effects on neuroendocrine signaling, fat cell metabolism, mitochondria, and GI microhabitat.
- Interactions between genetics, environment, and weight control interventions.
Conclusions

* More than 350 genes or gene markers have been associated with obesity and may contribute to the etiology of obesity in humans.

* There may be thousands of different types of obesity (Atkinson, 2005).
References

Mary Madeline Rogge, PhD, RN, FNP, BC
Associate Professor
Texas Tech University Health Sciences Center
School of Nursing
3601 4th Street
Lubbock, TX 79430
Office: 2C-140
Phone: 806-743-2730, ext 255
e-Mail: mary.rogge@ttuhsc.edu
Thank You