

Regional Anesthesia Simulation: The Use of Pork for Nerve Block Models David Rosales, BSN – Amy Snow, DNP, CRNA

Department of Nurse Anesthesia, Moffett & Sanders School of Nursing, Samford University

Background

Ultrasound-guided regional anesthesia (UGRA)

- > innovative
- > provides perioperative pain management
- minimizes: perioperative opioid consumption, recovery time, and inpatient hospital stay
- ➤ all models do not have human-like structures → unrealistic simulation
- artificial phantoms lack fascial planes that mimic human muscle echogenicity
- Iower success rates in the clinical setting

Pork meat models

- allow superior ultrasound-guided needle visibility and maneuvering
- ➢ human-like structures → realistic experience
- > inexpensive
- > disposable
- Injectable (appreciation of local anesthetic spread)

Clinical Question

Does using pork meat as a nerve block model, compared to other teaching simulation prototypes, influence students' nerve block performance in the clinical setting?

Naraghi et al, 2019.

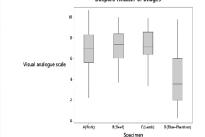
Case Report

- 34-year-old Caucasian female; breast cancer
- Bilateral mastectomy and breast reconstruction with tissue expanders
- Ultrasound-guided pectoralis and serratus place nerve (PECS I & II) blocks
- Bilateral PECS I & II blocks completed by CRNA due to unsuccessful attempts by SRNA
- Fentanyl 100 mcg IV on induction and 50 mcg IV during maintenance
- Smooth emergence with 0/10 postoperative pain
- No additional narcotics in the postanesthesia care unit
- > Hospital admission within one hour

https://nysora.wpenginepowered.com/wpcontent/uploads/2018/09/unnamed-5.jpg

Evidence-Based Discussion

Ideal UGRA training model


- should look, feel, and behave similarly to the intended educational focus
- facilitates procedural steps, dexterity, target identification, needle guidance, and proper hand-eye coordination
- blue phantoms lack human-like anatomical landmarks and are not injectable
- phantoms do not produce accurate US images or the "feel" of needle manipulation
- cadavers require maintenance and pose ethical concerns
- Cadavers scored comparably to meat models based on sonographic imaging (p=0.24)⁷

Evidence-Based Discussion (cont.)

Pork meat models

resemble human-like anatomical landmarks

- fascial planes allow accurate reflection of US waves and needle maneuvering
- can be frozen for future use and disposed of when no longer needed
- facilitate an entire needle picture using ultrasound
- discrimination between injectable and noninjectable tissue
- hydro dissection (local anesthetic spread)
- identification of potential needle tip locations
- > "look" and "feel" scores for a blue phantom
- were significantly lower than meat models ⁽p =0.01)⁶ Boxplot: Realism of images

Samuel et al., 2022

Comparison of the realism of the appearance of US images (0 least likely human tissue-10 most likely human tissue)

Translation to Practice

Pork meat models facilitate:

- 1) an entire needle picture with the inplane technique, 2) discrimination between injectable and non-injectable tissue, 3) hydro dissection, and 4) identification of potential needle tip locations¹
- ➢ Proposed plan → nurse anesthesia programs to implement pork meat training models in skills lab curricula.

Implementation

- Analyze regional anesthesia success rates in the clinical setting
- Associate different simulation models with the overall success and complication rates
- Employ only meat models for simulation in an academic curriculum
- Measure outcomes once meat model simulation has been implemented
- Future research could evaluate students' trajectories through simulation labs using meat models and their success rates in the clinical setting after graduation.

EBP Framework Algorithm and References

Scan this QR code for the algorithm and a complete reference list.

Questions?

drosales@samford.edu