IMPLEMENTATION AND EVALUATION OF AN EVIDENCED BASED PROTOCOL FOR THE DIAGNOSIS OF ASTHMA

Stephanie Edwards, CRNP; Kris Lunceford, CRNP; & Samer Mazahreh, CRNP

Ida V. Moffett School of Nursing, Samford University

PROBLEM IDENTIFIED

- Clinician lack of adherence to evidenced-based evaluation and diagnosis of asthma
- Specifically, spirometry is not routinely used to make the diagnosis
- This leads to inaccurate diagnosis and potentially inappropriate treatment

PROJECT PURPOSE

❖ Implement an asthma evaluation protocol checklist with spirometry testing that will guide clinicians in evidence-based evaluation and treatment of individuals presenting with a history and physical exam consistent with asthma AND evaluate effectiveness of protocol implementation

THEORETICAL FRAMEWORK

METHODS - DESIGN

- Standard of care evidenced-based protocol implemented which included an asthma checklist of selfreported symptoms (SRS) and physical exam findings (PEF) along with spirometry testing
 - **❖** SRS
- Night cough
- Difficulty breathing
- Wheezing
- Atopic dermatitis
- Previousbronchodilator
- **❖** PEF
- Dyspnea
- Atopic dermatitis
- Resting Saturation
- Wheezing
- Decreased breathing
- Andom sample of participants aged 5 years and greater selected from an asthma and allergy clinic in Birmingham, AL and a primary care clinic in New Rochelle, NY
- ❖ IRB obtained for retrospective pre- and postimplementation data review
- * Research questions:
- What percentage of individuals with provider identified potential for asthma received a spirometryconfirmed asthma diagnosis?
- Did the implementation of an evidence-based protocol increase referral for spirometry testing?
- What SRS or PEF were predictive of a spirometryconfirmed asthma diagnosis in the study population?

TIMELINE

- ❖ January 2020: implement asthma protocol with spirometry
- ❖ January 2020: submit IRB for data collection
- February 2020: pre-implementation data collection for patients (random sampling) seen January-March 2019
- March 2020: post-implementation data collection for patients (random sampling) seen from implementation in January 2020 to present
- March 2020 April 2020: Retrospective chart review and multivariate logistic regression analysis completed.

RESULTS

Demographic Characteristics

Characteristic		Pre-intervention	Post-intervention
Gender	Male	36	54
	Female	64	46
Age	5-10	24	14
	11-18	21	20
	19-35	22	19
	36-50	13	30
	51-65	12	12
	65+	7	8
Location	Alabama	70	69
	New York	30	31

Comparison of confirmed asthma diagnoses before and after protocol implementation

Binary Logistic Regression Model Summary

-2 Log	Cox & Snell	Nagelkerke R
likelihood	R Square	Square
80.481 ^a	.333	.478

Significant Variables in the Equation

	P - Value
PEF_Decreased breathing	.036
SRS_Wheezing	.017
SRS_Previous bronchodilator	use .013
SRS_Chest tightness	.010

SUMMARY

- ❖ The use of the evidence-based evaluation and diagnosis tool led to the improved rate of spirometry referrals with positive asthma diagnosis
- ❖ Following the implementation of the evaluation and diagnostic protocol, the number of spirometry confirmed asthma diagnoses increased by 157%
- ❖ The referrals for confirmatory spirometry testing increased from 28% to 72% of all referrals made after introducing the evidence-based protocol
- ❖ According to the findings, between 33% and 47% of the variation in asthma diagnosis can be explained by the SRS and PEF factors
- ❖ Although all the SRS and PEF findings can predict asthma diagnosis, according to the *P* value the variables that accurately predict a positive asthma diagnosis are decreased breathing sounds, wheezing, previous bronchodilator use, and chest tightness
- Previous bronchodilator use increased the odds of a positive asthma diagnosis by 16 times
- ❖ Physical exam findings of decreased breath sounds increased the odds of a positive diagnosis by 14.7% respectively

IMPLICATIONS FOR PRACTICE

- The results of the study support spirometry as the evidence-based tool for diagnosing persons with
- The study supports the continued use of the

implemented asthma checklist protocol along with spirometry testing to accurately confirm an asthma diagnosis

