

Effects of pain and disability of Chinese patients undergoing lumbar fusion surgery with dynamic devices

¹Meng-Shan Wu Shu-Fen Su²*

² RN, PhD, Associate Professor, Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan (R.O.C)

- 1. Studies revealed that posterior lumbar fusion surgery(PLIF) can reduced pain and improved disability, yet it may lead to a pathologic deterioration and increase instability of the adjacent segment, such as adjacent segment disease(ASD).
- 2. The semi-rigid dynamic devices have been developed for preserving lumbar spinal activity and preventing ASD.
- 3. However, the relevant study is lack in Taiwan to compare the effectiveness of lumbar fusion surgery with semi-rigid dynamic device & PLIF.

Objective

To compare pain and disability of patients undergoing lumbar spine fusion surgery with semi-rigid dynamic devices and PLIF.

Table 1. Comparison of BPI and ODI levels before and after surgery between dynamic devices and PLIF groups

Group (n)	Worst pain	Average pain	Present pain	Least pain		ODI	
	Pre/Post surgery mean(SD)	Pre/Post surgery mean(SD)	Pre/Post surgery mean(SD)	Pre/Post surgery mean(SD)	p	Pre/Post surgery mean(SD)	p
Dynamic (39)	8.51(1.47)/ 0.82(0.85)	7.21(1.53)/ 0.51(0.64)	5.54(2.53)/ 0.38(0.49)	2.95(2.35)/ 0.26(0.50)	.000***	51.77(17.88) /1.49(4.17)	.000***
PLIF (20)	8.15(2.11)/ 1.60(1.35)	6.10(1.86)/ 0.90(1.02)	4.45(2.11)/ 0.75(0.79)	3.70(2.52)/ 0.75(0.72)	.000***	60.78(16.75) /7.88(8.25)	.000***
P	.027*	.197	.085	.004**		.000***	

1 SD, Standard deviation; *p<.05; **p<.01; ***p<.001

Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation

Methods

59 LDD patients underwent lumbar fusion surgery

Dynamic group (n=39)

PLIF group (n=20)

Measurement Tools (Pre-/Post-OP 6 months)

- * Demographic questionnaire: 13 items
- * Brief Pain Inventrory-Short Form(BPI): 4 domains, 15 items
- * Oswestry Disability Index (ODI): 10 items

Statistical Analysis

- * Descriptive statistics
- * Nonparametric test: Wilcoxon signed rank test, Mann- Whitney Utest, Kruskal-Wallis test

Table 2. Demographic stratified according to BPI and ODI levels after surgery

Devices(n)	Dynamic (n=39)	PLIF(n=20) Worst pain Post-surgery Mean(SD)	P	Dynamic(n=39) Least pain Post-surgery Mean(SD)	PLIF(n=20) Least pain Post-surgery Mean(SD)		ODI Post-surgery Mean(SD)	PLIF(n=20) ODI Post-surgery Mean(SD)	p										
	Worst pain Post-surgery Mean(SD1)					P													
										Sex			.060			.146			.235
										Male	0.53(0.72)	1.20(1.23)		0.30(0.54)	0.60(0.70)		0.47(1.51)	7.50(8.84)	
Female	1.05(0.90)	2.00(1.41)		0.53(0.67)	0.90(0.74)		2.27(5.32)	8.26(8.08)											
Age			.327			.176			.075										
<50 years	0.58(0.67)	1.25(0.96)		0.17(0.39)	0.50(0.58)		0.50(1.73)	0.50(1.00)											
50-65 years	0.81(0.75)	1.50(1.51)		0.13(0.34)	0.80(0.79)		1.75(4.61)	10.24(8.62)											
≥66 years	1.09(1.14)	2.00(1.41)		0.55(0.69)	0.83(0.75)		2.18(5.40)	8.87(8.27)											
Work catagories			.372			.839			.057										
Office worker	0.25(0.50)	1.33(1.16)		0.50(0.25)	0.67(0.58)		1.50(3.00)	1.33(1.16)											
Laborer	0.89(0.92)	1.36(1.29)		0.29(0.54)	0.64(0.67)		1.50(4.73)	8.27(8.77)											
Housekeeper	0.86(0.69)	2.17(1.60)		0.14(0.38)	1.00(0.89)		1.43(2.23)	10.43(8.40)											

¹SD, Standard deviation, p<05; P<01; P<.001

NATIONAL TAICHUNG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Results

- . Both Dynamic and PLIF groups had a significant improvement in pain levels(BPI) and daily function limitation(ODI)(all p < .01). (Table 1).
- 2. Dynamic group had less worst pain, least pain and daily function limitation than the PLIF group (all p<0.05). (Table 1).
- 3. No significant differences in pain levels and daily function limitation between two groups in gender, age, and work categories (all p>0.05). (Table 2).

Conclusions

- Lumbar fusion surgery with semi-rigid dynamic devices and posterior lumbar fusion surgery can both significantly improve pain levels and daily function limitation for patients with lumbar spine degenerative diseases.
- 2. Lumbar fusion surgery with semi-rigid dynamic devices has better efficacy than the posterior lumbar fusion surgery in decreasing pain and daily function limitation.
- 3. Nurses should follow-up postoperative pain and daily function limitation regularly. Also, nurses should provide a proper pain management and discharge plan for LDD patients while they discharge.

References

- Asher, A. L., Chotai, S., Devin, C. J., Speroff, T., Harrell Jr, F. E., Nian, H., ... & Bydon, M. (2016). Inadequacy of 3-month Oswestry Disability Index outcome for assessing individual longer-term patient experience after lumbar spine surgery. Journal of Neurosurgery: Spine, 1-11.
- 2. Gu, R., Zhao, J. W., Zhao, J. H., Liu, J. B., & Sun, Y. F. (2016). Clinical Follow-Up after Treatment of Degenerative Lumbar Disease by Posterior Dynamic Stabilizing Technique. Orthop Muscular Syst, 5(208), 2161-0533.
- 3. Huang, Y. J., Zhao, S. J., Zhang, Q., Nong, L. M., & Xu, N. W. (2017). Comparison of lumbar pedicular dynamic stabilisation systems versus fusion for the treatment of lumbar degenerative disc disease: A meta-analysis. Acta orthopaedica Belgica, 83(1), 180-193.

Corresponding Author

Shu-Fen Su, PhD, MSc, RN Associate Professor, Department of Nursing, National Taichung University of Science and Technology, Taiwan, R.O.C E-mail: sofe6726@yahoo.com.tw