Purpose: To examine whether the participants training to improve their pain reporting accuracy would affect the results of a Randomized Controlled Trial (RCT).

Methods:
A hundred healthy subjects will be recruited for a cross-sectional, double-blind, randomized experiment. The trial consists of 6 sessions, including data collection, pain sensitivity tests, FAST and EPT training, and finally an ibuprofen or placebo medication and a series of pain sensitivity tests using experimental pain assessment models. This study emphasizes the ability of the individual to report painfully and examines intervention designed to improve this ability.

Research hypotheses: (1) Greater ability of participants to be accurate in the FAST test will be associated with a lower response to placebo; (2) Training of participants will improve the accuracy of pain reports in response to experimental stimulation.

Research Tool: To measure the ability to be accurate in pain reports and the response to placebo and drug, we will use two devices designed to produce two types of pain, pain due to thermal stimulation and pain in response to mechanical stimulation.
1. The Thermal Sensory Analyzer II is a precise and computerized device capable of producing and recording a response to thermal stimuli and extremely strong vibrations such as heat, cold and vibrations.
2. The AlgoMed-Medoc device is a device that allows the creation of local pressure on the selected area on the body (Over thenar eminence).

Procedure: The subjects are recruited for the experiment after making a telephone call, performing a test of conformity and setting a date for the first meeting. After receiving their written consent, the participants will complete a personal and demographic information questionnaire and undergo a series of sensitivity tests. During the training phase, pain intensity scores of each stimulus will be recorded using the Numerical Rating Scale (NRS). The last stage includes two sessions in which subjects will receive a real drug once (ibuprofen) and a placebo once. And at the end they will again examine pain thresholds and mechanical and thermal stimulation tests on the ends. Each participant will receive monetary compensation for his participation and according to the stage at which he is found as detailed in the trial protocol.

Results: not complete.
Conclusion: not complete.
Keywords:
Pain assessment, Pain reporting accuracy and Placebo response

References:

Abstract Summary:
In practice, the experiment will improve pain assessments and inspire and guide researchers from other disciplines in an attempt to examine how accurately the sensations/ symptoms they are investigating are being investigated and whether this accuracy can be improved.

Content Outline:
The main problem is, that pain considered to be a subjective experience different in intensity from person to another.

Much effort has been invested in attempts to develop objective alternatives, based on various biomarkers, but little attention has been paid to improving patient's ability to use these measures.

Recently, methods have been developed that allow, for the first time, to evaluate and improve the accuracy of patient's pain reports.

A new method called the Focused Analgesia Selection Test (FAST), which uses an experimental pain paradigm, Which subjects reported experiencing pain as a result of painful stimuli, random, different intensities and invisibly.

The second method for training and improving pain reports- Evoked Pain Training (EPT) based on the exposure of the subjects to the FAST test several times, while providing feedback on the performance.

The results of recent studies using these methods indicate that those who reported the pain more accurately reduced the placebo response.

*Our aim*: is to examine whether the participants training to improve the accuracy of reporting pain, improve the accuracy of the reports of pain, and that will reduce the response to the drug and placebo.
METHODS: A hundred healthy subjects will be recruited for a cross-sectional, double-blind, randomized experiment. The trial consists of 6 sessions, including data collection, pain sensitivity tests, FAST and EPT training, and finally an ibuprofen or placebo medication and a series of pain sensitivity tests using experimental pain assessment models. This study emphasizes the ability of the individual to report painfully and examines intervention designed to improve this ability.

Research hypotheses: (1) Greater ability of participants to be accurate in the FAST test will be associated with a lower response to placebo; (2) Training of participants will improve the accuracy of pain reports in response to experimental stimulation.

First Primary Presenting Author

Primary Presenting Author

Ehab Matta, BSN, RN, CDN
University of Haifa, Israel
Pain innovation lab, The Cheryl Spencer Department of Nursing, Faculty of Social Welfare & Health Sciences.
Research Assistant
Mi`ilya,
Haifa
Israel

Author Summary: I am a registered nurse, work in internal medicine department. Responsible for the wound's treatment and management in my department. I specialized in the field of nephrology and dialysis. Now, I'm master student in nursing at the University of Haifa. I work especially in the field of pain, and I do my thesis which deals with improving the accuracy of pain reports.