Using Course Analytics for Measuring Student Engagement and Outcomes in Online MSN Students

Patricia A. Riccio, Ph.D., MSN, BSN, RN

Drexel University

Disclosure*

Authors: **Patricia A. Riccio**, Ph.D., MSN, BSN, RN and Joanne Farley Serembus, E.D., RN, CCRN(Alum), CNE, *College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA*

Objectives:

- 1. Describe one purpose of using course analytics in online nursing education.
- 2. Identify one outcome of examining engagement through course analytics in online nursing education.
 - *No sponsorship or commercial support was provided

Background

Course Analytics

- 1. May provide information on student engagement;
- 2. Improve the quality of online courses by making changes in learning activities, assignments and the learning environment

Background (con't)

Course Analytics

- 1. To examine student activity data to make predictions about learning outcomes;
- 2. Institute appropriate interventions to improve outcomes for the future

Purpose

To analyze the relationship between engagement

- 1. Course Access number of times students accessed the course;
 - 2. **Minutes** spent in the course;
 - 3. Interactions with the instructor/students;
 - 4. **Submissions** in the course)

with

course grade

Conceptual Framework

adapted: Astin's Theory of Involvement, 1975; 1985

Input

Entry GPA

Major Selected (Specialty)

Resources

Course Access

Interactions

Submisisons

Minutes

Output

Course Grade

Method

Retrospective, Correlational Design

- To analyze the relationship between admission GPA with course analytics;
- To analyze associations with age, gender, major, and geography

Sample (n=360)

Abstracted data were collected using:

Blackboard Learn LMS

 MSN students enrolled at a large, private, urban university

Online MSN program

Northeast part of the United States

Data Analysis

- 1. Correlation coefficients,
- 2.Analysis of variance (ANOVA),
- 3. Multiple linear regression (backwards elimination method)

Data Analysis (con't)

Pearson product moment correlation coefficients and Spearman correlation coefficients-to assess relationships between the input variables (GPA, major, access, minutes, interactions, submissions) and the output variable (grade).

Data Analysis (con't)

- 1. ANOVA assess impact of categorical predictor variables on grade,
- 2. Backwards elimination within a multiple linear regression analysis-produce a model only included variables that significantly predicted grade (alpha = .05 level),
- 3. Kruskal-Wallis test was used to confirm the results of the ANOVA

Results

Factors Most Impacted Grade

- 1) Entry level GPA,
- 2) Age,
- 3) Interactions with instructor or students,
- 4) Submissions in the course.

Results (con't)

- Each additional increase in submissions, resulted in an increase in course grade by 0.33% (p<0.0001).
- Each one-point increase in entry level GPA was associated with an increase in course grade by 1.93% (p = 0.0289).
- Each one-year increase in age, demonstrated a course grade decrease of 0.17% (p<0.0001).

Conclusion

Interactions and submissions had highest impact on course grade.

Consistent with Astin's model.

Further Study

- ★ Larger samples to determine if
 Astin's model is verified in that entry
 GPA does determine student grades;
- Investigate finding that older students tended to have lower grades.

Further study (con't)

Replication of the study to determine whether classes which vary in **numbers or types** of assignments still demonstrate an association with interactions and submissions

References

Available upon request.

Thank You!

